Average-Cost Control of Stochastic Manufacturing Systems


Book Description

This book articulates a new theory that shows that hierarchical decision making can in fact lead to a near optimization of system goals. The material in the book cuts across disciplines. It will appeal to graduate students and researchers in applied mathematics, operations management, operations research, and system and control theory.




Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems


Book Description

This edited volume contains 16 research articles. It presents recent and pressing issues in stochastic processes, control theory, differential games, optimization, and their applications in finance, manufacturing, queueing networks, and climate control. One of the salient features is that the book is highly multi-disciplinary. The book is dedicated to Professor Suresh Sethi on the occasion of his 60th birthday, in view of his distinguished career.




Optimization, Dynamics, and Economic Analysis


Book Description

This book includes a collection of articles that present recent developments in the fields of optimization and dynamic game theory, economic dynamics, dynamic theory of the firm, and population dynamics and non standard applications of optimal control theory. The authors of the articles are well respected authorities in their fields and are known for their high quality research in the fields of optimization and economic dynamics.




Maintenance, Modeling and Optimization


Book Description

Production costs are being reduced by automation, robotics, computer-integrated manufacturing, cost reduction studies and more. These new technologies are expensive to buy, repair, and maintain. Hence, the demand on maintenance is growing and its costs are escalating. This new environment is compelling industrial maintenance organizations to make the transition from fixing broken machines to higher-level business units for securing production capacity. On the academic front, research in the area of maintenance management and engineering is receiving tremendous interest from researchers. Many papers have appeared in the literature dealing with the modeling and solution of maintenance problems using operations research (OR) and management science (MS) techniques. This area represents an opportunity for making significant contributions by the OR and MS communities. Maintenance, Modeling, and Optimization provides in one volume the latest developments in the area of maintenance modeling. Prominent scholars have contributed chapters covering a wide range of topics. We hope that this initial contribution will serve as a useful informative introduction to this field that may permit additional developments and useful directions for more research in this fast-growing area. The book is divided into six parts and contains seventeen chapters. Each chapter has been subject to review by at least two experts in the area of maintenance modeling and optimization. The first chapter provides an introduction to major maintenance modeling areas illustrated with some basic models. Part II contains five chapters dealing with maintenance planning and scheduling. Part III deals with preventive maintenance in six chapters. Part IV focuses on condition-based maintenance and contains two chapters. Part V deals with integrated production and maintenance models and contains two chapters. Part VI addresses issues related to maintenance and new technologies, and also deals with Just-in-Time (JIT) and Maintenance.







Mathematics and Its Applications to Industry


Book Description

Papers presented at the INSA Seminar on "Mathematics and Applications to Industry and New Emerging Areas" held in New Delhi, 2000.







ETFA '96


Book Description




Mathematical Reviews


Book Description




Production Planning with Capacitated Resources and Congestion


Book Description

This book presents a comprehensive overview of recent developments in production planning. The monograph begins with an introductory chapter reviewing the need for these production planning models, that operate by determining time-phased releases of work into the facility or supply chain, relating these to the Manufacturing Planning and Control (MPC) and Advanced Planning and Scheduling (APS) frameworks, that form the basis of most academic research and industrial practice. The extensive body of work on Workload Control is also placed in this context, and proves the need for improved models with a discussion of the difficulties, these approaches encounter. The next two chapters present a detailed review of the state of the art in optimization models based on exogenous planned lead times, and examines the cases where these can take both integer and fractional values. The difficulties arising in estimating planned lead times are consistent with factory behavior which are highlighted, noting that many of these lead to non-convex optimization models. Attempts to address these difficulties by iterative multimodel approaches, that combine simulation and mathematical programming, are also discussed in detail. The next three chapters of the volume address the set of techniques developed using clearing functions, which represent the expected output of a resource in a planning period, as a function of the expected workload of the resource, during that period. The chapters on this subject propose a basic optimization model for multiple products, discuss the difficulties of this model and some possible solutions. It also reviews prior work, and discuss a number of alternative formulations of the clearing function concept with their respective advantages and disadvantages. Applications to lot sizing decisions and a number of other specific problems are also described. This volume concludes with an assessment of the state of the art described in the volume, and several directions for future work.