Optimization Using Linear Programming


Book Description

Designed for engineers, mathematicians, computer scientists, financial analysts, and anyone interested in using numerical linear algebra, matrix theory, and game theory concepts to maximize efficiency in solving applied problems. The book emphasizes the solution of various types of linear programming problems by using different types of software, but includes the necessary definitions and theorems to master theoretical aspects of the topics presented. Features: Emphasizes the solution of various types of linear programming problems by using different kinds of software, e.g., MS-Excel, solutions of LPPs by Mathematica, MATLAB, WinQSB, and LINDO Provides definitions, theorems, and procedures for solving problems and all cases related to various linear programming topics Includes numerous application examples and exercises, e.g., transportation, assignment, and maximization Presents numerous topics that can be used to solve problems involving systems of linear equations, matrices, vectors, game theory, simplex method, and more.




Advances in Optimization and Linear Programming


Book Description

This new volume provides the information needed to understand the simplex method, the revised simplex method, dual simplex method, and more for solving linear programming problems.




Linear and Integer Optimization


Book Description

Presenting a strong and clear relationship between theory and practice, Linear and Integer Optimization: Theory and Practice is divided into two main parts. The first covers the theory of linear and integer optimization, including both basic and advanced topics. Dantzig's simplex algorithm, duality, sensitivity analysis, integer optimization models




Understanding and Using Linear Programming


Book Description

The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming". A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes".




Modeling and Solving Linear Programming with R


Book Description

Linear programming is one of the most extensively used techniques in the toolbox of quantitative methods of optimization. One of the reasons of the popularity of linear programming is that it allows to model a large variety of situations with a simple framework. Furthermore, a linear program is relatively easy to solve. The simplex method allows to solve most linear programs efficiently, and the Karmarkar interior-point method allows a more efficient solving of some kinds of linear programming. The power of linear programming is greatly enhanced when came the opportunity of solving integer and mixed integer linear programming. In these models all or some of the decision variables are integers, respectively. In this book we provide a brief introduction to linear programming, together with a set of exercises that introduce some applications of linear programming. We will also provide an introduction to solve linear programming in R. For each problem a possible solution through linear programming is introduced, together with the code to solve it in R and its numerical solution.




Linear Optimization Problems with Inexact Data


Book Description

Linear programming has attracted the interest of mathematicians since World War II when the first computers were constructed. Early attempts to apply linear programming methods practical problems failed, in part because of the inexactness of the data used to create the models. This book presents a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework.




Linear Programming


Book Description

This Fourth Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with a substantial treatment of linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Readers will discover a host of practical business applications as well as non-business applications. Topics are clearly developed with many numerical examples worked out in detail. Specific examples and concrete algorithms precede more abstract topics. With its focus on solving practical problems, the book features free C programs to implement the major algorithms covered, including the two-phase simplex method, primal-dual simplex method, path-following interior-point method, and homogeneous self-dual methods. In addition, the author provides online JAVA applets that illustrate various pivot rules and variants of the simplex method, both for linear programming and for network flows. These C programs and JAVA tools can be found on the book's website. The website also includes new online instructional tools and exercises.




Linear Optimization


Book Description

The Subject A little explanation is in order for our choice of the title Linear Opti- 1 mization (and corresponding terminology) for what has traditionally been called Linear Programming.Theword programming in this context can be confusing and/or misleading to students. Linear programming problems are referred to as optimization problems but the general term linear p- gramming remains. This can cause people unfamiliar with the subject to think that it is about programming in the sense of writing computer code. It isn’t. This workbook is about the beautiful mathematics underlying the ideas of optimizing linear functions subject to linear constraints and the algorithms to solve such problems. In particular, much of what we d- cuss is the mathematics of Simplex Algorithm for solving such problems, developed by George Dantzig in the late 1940s. The word program in linear programming is a historical artifact. When Dantzig ?rstdevelopedthe Simplex Algorithm to solvewhat arenowcalled linear programming problems, his initial model was a class of resource - location problems to be solved for the U.S. Air Force. The decisions about theallocationswerecalled‘Programs’bytheAirForce,andhencetheterm.




Linear Programming with MATLAB


Book Description

A self-contained introduction to linear programming using MATLAB® software to elucidate the development of algorithms and theory. Exercises are included in each chapter, and additional information is provided in two appendices and an accompanying Web site. Only a basic knowledge of linear algebra and calculus is required.




Linear Optimization and Extensions


Book Description

From the reviews: "Do you know M.Padberg's Linear Optimization and Extensions? [...] Now here is the continuation of it, discussing the solutions of all its exercises and with detailed analysis of the applications mentioned. Tell your students about it. [...] For those who strive for good exercises and case studies for LP this is an excellent volume." Acta Scientiarum Mathematicarum