Orbital Debris


Book Description

Since the beginning of space flight, the collision hazard in Earth orbit has increased as the number of artificial objects orbiting the Earth has grown. Spacecraft performing communications, navigation, scientific, and other missions now share Earth orbit with spent rocket bodies, nonfunctional spacecraft, fragments from spacecraft breakups, and other debris created as a byproduct of space operations. Orbital Debris examines the methods we can use to characterize orbital debris, estimates the magnitude of the debris population, and assesses the hazard that this population poses to spacecraft. Potential methods to protect spacecraft are explored. The report also takes a close look at the projected future growth in the debris population and evaluates approaches to reducing that growth. Orbital Debris offers clear recommendations for targeted research on the debris population, for methods to improve the protection of spacecraft, on methods to reduce the creation of debris in the future, and much more.




Theory Of Satellite Fragmentation In Orbit


Book Description

For over half a century, an increasing number of satellites have fragmented in orbit, creating a large amount of hazardous orbital debris which threaten the safety of useful functioning satellites and space missions. This book discusses the theory behind these fragmentations followed by studies of actual cases.The book begins with a survey of satellite fragmentations in orbit and the consequent formation of orbital debris in chronological order. Next, the fundamental physical processes underlying satellite fragmentations are outlined and the methods of analyzing satellite fragmentations presented. The rest of the book presents analyses of the major satellite fragmentation events including accidental and intentional breakups, those due to explosions and collisions, as well as those belonging to the unknown category.




History of On-Orbit Satellite Fragmentations (14th Edition)


Book Description

Includes full color illustrations. Since the first serious satellite fragmentation occurred in June 1961 (which instantaneously increased the total Earth satellite population by more than 400%) the issue of space operations within the finite region of space around the Earth has been the subject of increasing interest and concern. The prolific satellite fragmentations of the 1970s and the marked increase in the number of fragmentations in the 1980s served to widen international research into the characteristics and consequences of such events. Continued events in all orbits in later years make definition and historical accounting of those events crucial to future research. Large, manned space stations and the growing number of operational robotic satellites demand a better understanding of the hazards of the dynamic Earth satellite population.




Orbital Debris: A Chronology


Book Description

The 37-year (1961-1998) history of orbital debris concerns. Tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Includes debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.




Limiting Future Collision Risk to Spacecraft


Book Description

Derelict satellites, equipment and other debris orbiting Earth (aka space junk) have been accumulating for many decades and could damage or even possibly destroy satellites and human spacecraft if they collide. During the past 50 years, various National Aeronautics and Space Administration (NASA) communities have contributed significantly to maturing meteoroid and orbital debris (MMOD) programs to their current state. Satellites have been redesigned to protect critical components from MMOD damage by moving critical components from exterior surfaces to deep inside a satellite's structure. Orbits are monitored and altered to minimize the risk of collision with tracked orbital debris. MMOD shielding added to the International Space Station (ISS) protects critical components and astronauts from potentially catastrophic damage that might result from smaller, untracked debris and meteoroid impacts. Limiting Future Collision Risk to Spacecraft: An Assessment of NASA's Meteoroid and Orbital Debris Program examines NASA's efforts to understand the meteoroid and orbital debris environment, identifies what NASA is and is not doing to mitigate the risks posed by this threat, and makes recommendations as to how they can improve their programs. While the report identified many positive aspects of NASA's MMOD programs and efforts including responsible use of resources, it recommends that the agency develop a formal strategic plan that provides the basis for prioritizing the allocation of funds and effort over various MMOD program needs. Other necessary steps include improvements in long-term modeling, better measurements, more regular updates of the debris environmental models, and other actions to better characterize the long-term evolution of the debris environment.




Space Debris


Book Description

The future evolution of the debris environment will be forecast on the basis of traffic models and possible hazard mitigation practices. The text shows how large trackable objects will have re-entry pinpointed and predictions made on related risk assessment for possible ground impact. Models will also be described for meteoroids which are also a prevailing risk.










Space Debris


Book Description

When the first sputnik was launched and the space era began, few gave thought to the possible negative impact of putting satellites into orbit. In fact, man's space activity has led to the formation of a new media named "space debris," i.e. man-made objects and their fragments launched into space, currently inactive and no longer serving any useful purpose. Space Debris: Hazard Evaluation and Mitigation will appeal to readers unfamiliar with the issues, as well as experts and designers. It introduces concepts behind the problems of space ecology. The volume features actual data on the space debris environment; new mathematical models for space debris evolution, production and self-production; description of the existing software and concepts for shield design. The author also reviews methods of collision risk assessment, including the attitudes and inclinations of orbits, collision hazard evaluation and suggestions for preventative measures.