Order and Chaos in Nonlinear Physical Systems


Book Description

This volume is concerned with the theoretical description of patterns and instabilities and their relevance to physics, chemistry, and biology. More specifically, the theme of the work is the theory of nonlinear physical systems with emphasis on the mechanisms leading to the appearance of regular patterns of ordered behavior and chaotic patterns of stochastic behavior. The aim is to present basic concepts and current problems from a variety of points of view. In spite of the emphasis on concepts, some effort has been made to bring together experimental observations and theoretical mechanisms to provide a basic understanding of the aspects of the behavior of nonlinear systems which have a measure of generality. Chaos theory has become a real challenge to physicists with very different interests and also in many other disciplines, of which astronomy, chemistry, medicine, meteorology, economics, and social theory are already embraced at the time of writing. The study of chaos-related phenomena has a truly interdisciplinary charac ter and makes use of important concepts and methods from other disciplines. As one important example, for the description of chaotic structures the branch of mathematics called fractal geometry (associated particularly with the name of Mandelbrot) has proved invaluable. For the discussion of the richness of ordered structures which appear, one relies on the theory of pattern recognition. It is relevant to mention that, to date, computer studies have greatly aided the analysis of theoretical models describing chaos.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.




Fractional-Order Nonlinear Systems


Book Description

"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. Ivo Petráš is an Associate Professor of automatic control and the Director of the Institute of Control and Informatization of Production Processes, Faculty of BERG, Technical University of Košice, Slovak Republic. His main research interests include control systems, industrial automation, and applied mathematics.




Nonlinear Dynamics and Chaos


Book Description

Ein angesehener Bestseller - jetzt in der 2.aktualisierten Auflage! In diesem Buch finden Sie die aktuellsten Forschungsergebnisse auf dem Gebiet nichtlinearer Dynamik und Chaos, einem der am schnellsten wachsenden Teilgebiete der Mathematik. Die seit der ersten Auflage hinzugekommenen Erkenntnisse sind in einem zusätzlichen Kapitel übersichtlich zusammengefasst.




Chaos and Integrability in Nonlinear Dynamics


Book Description

Presents the newer field of chaos in nonlinear dynamics as a natural extension of classical mechanics as treated by differential equations. Employs Hamiltonian systems as the link between classical and nonlinear dynamics, emphasizing the concept of integrability. Also discusses nonintegrable dynamics, the fundamental KAM theorem, integrable partial differential equations, and soliton dynamics.




Chaotic Dynamics of Nonlinear Systems


Book Description

Introduction to the concepts, applications, theory, and technique of chaos. Suitable for advanced undergraduates and graduate students and researchers. Requires familiarity with differential equations and linear vector spaces. 1990 edition.




Introduction to Applied Nonlinear Dynamical Systems and Chaos


Book Description

This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik




Variational Principles in Classical Mechanics


Book Description

Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.




Chaos


Book Description

Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.




Nonlinear Dynamics, Chaos, and Complexity


Book Description

This book demonstrates how mathematical methods and techniques can be used in synergy and create a new way of looking at complex systems. It becomes clear nowadays that the standard (graph-based) network approach, in which observable events and transportation hubs are represented by nodes and relations between them are represented by edges, fails to describe the important properties of complex systems, capture the dependence between their scales, and anticipate their future developments. Therefore, authors in this book discuss the new generalized theories capable to describe a complex nexus of dependences in multi-level complex systems and to effectively engineer their important functions. The collection of works devoted to the memory of Professor Valentin Afraimovich introduces new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to molecular biology, genetics, neurosciences, artificial intelligence as well as classic problems in physics, machine learning, brain and urban dynamics. The book can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, urban planners, and even musicians (with some mathematical background).