Solving ODEs with MATLAB


Book Description

This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.







Practical MATLAB Modeling with Simulink


Book Description

Employ the essential and hands-on tools and functions of MATLAB's ordinary differential equation (ODE) and partial differential equation (PDE) packages, which are explained and demonstrated via interactive examples and case studies. This book contains dozens of simulations and solved problems via m-files/scripts and Simulink models which help you to learn programming and modeling of more difficult, complex problems that involve the use of ODEs and PDEs. You’ll become efficient with many of the built-in tools and functions of MATLAB/Simulink while solving more complex engineering and scientific computing problems that require and use differential equations. Practical MATLAB Modeling with Simulink explains various practical issues of programming and modelling. After reading and using this book, you'll be proficient at using MATLAB and applying the source code from the book's examples as templates for your own projects in data science or engineering. What You Will LearnModel complex problems using MATLAB and SimulinkGain the programming and modeling essentials of MATLAB using ODEs and PDEsUse numerical methods to solve 1st and 2nd order ODEsSolve stiff, higher order, coupled, and implicit ODEsEmploy numerical methods to solve 1st and 2nd order linear PDEsSolve stiff, higher order, coupled, and implicit PDEsWho This Book Is For Engineers, programmers, data scientists, and students majoring in engineering, applied/industrial math, data science, and scientific computing. This book continues where Apress' Beginning MATLAB and Simulink leaves off.




A Course in Ordinary Differential Equations


Book Description

The first contemporary textbook on ordinary differential equations (ODEs) to include instructions on MATLAB, Mathematica, and Maple A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field o




Differential Equations with MATLAB


Book Description

A unique textbook for an undergraduate course on mathematical modeling, Differential Equations with MATLAB: Exploration, Applications, and Theory provides students with an understanding of the practical and theoretical aspects of mathematical models involving ordinary and partial differential equations (ODEs and PDEs). The text presents a unifying picture inherent to the study and analysis of more than 20 distinct models spanning disciplines such as physics, engineering, and finance. The first part of the book presents systems of linear ODEs. The text develops mathematical models from ten disparate fields, including pharmacokinetics, chemistry, classical mechanics, neural networks, physiology, and electrical circuits. Focusing on linear PDEs, the second part covers PDEs that arise in the mathematical modeling of phenomena in ten other areas, including heat conduction, wave propagation, fluid flow through fissured rocks, pattern formation, and financial mathematics. The authors engage students by posing questions of all types throughout, including verifying details, proving conjectures of actual results, analyzing broad strokes that occur within the development of the theory, and applying the theory to specific models. The authors’ accessible style encourages students to actively work through the material and answer these questions. In addition, the extensive use of MATLAB® GUIs allows students to discover patterns and make conjectures.




Numerical Computing with MATLAB


Book Description

A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.




Differential Equations and Linear Algebra


Book Description

Differential equations and linear algebra are two central topics in the undergraduate mathematics curriculum. This innovative textbook allows the two subjects to be developed either separately or together, illuminating the connections between two fundamental topics, and giving increased flexibility to instructors. It can be used either as a semester-long course in differential equations, or as a one-year course in differential equations, linear algebra, and applications. Beginning with the basics of differential equations, it covers first and second order equations, graphical and numerical methods, and matrix equations. The book goes on to present the fundamentals of vector spaces, followed by eigenvalues and eigenvectors, positive definiteness, integral transform methods and applications to PDEs. The exposition illuminates the natural correspondence between solution methods for systems of equations in discrete and continuous settings. The topics draw on the physical sciences, engineering and economics, reflecting the author's distinguished career as an applied mathematician and expositor.




Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB


Book Description

Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB shows the reader how to exploit a fuller array of numerical methods for the analysis of complex scientific and engineering systems than is conventionally employed. The book is dedicated to numerical simulation of distributed parameter systems described by mixed systems of algebraic equations, ordinary differential equations (ODEs) and partial differential equations (PDEs). Special attention is paid to the numerical method of lines (MOL), a popular approach to the solution of time-dependent PDEs, which proceeds in two basic steps: spatial discretization and time integration. Besides conventional finite-difference and element techniques, more advanced spatial-approximation methods are examined in some detail, including nonoscillatory schemes and adaptive-grid approaches. A MOL toolbox has been developed within MATLAB®/OCTAVE/SCILAB. In addition to a set of spatial approximations and time integrators, this toolbox includes a collection of application examples, in specific areas, which can serve as templates for developing new programs. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB provides a practical introduction to some advanced computational techniques for dynamic system simulation, supported by many worked examples in the text, and a collection of codes available for download from the book’s page at www.springer.com. This text is suitable for self-study by practicing scientists and engineers and as a final-year undergraduate course or at the graduate level.




Differential Equation Solutions with MATLAB®


Book Description

This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. Boundary value ODEs, fractional-order ODEs and partial differential equations are also discussed.




Linear Algebra and Differential Equations Using MATLAB


Book Description

These world-renowned authors integrate linear algebra and ordinary differential equations in this unique book, interweaving instructions on how to use MATLAB® with examples and theory. They use computers in two ways: in linear algebra, computers reduce the drudgery of calculations to help students focus on concepts and methods; in differential equations, computers display phase portraits graphically for students to focus on the qualitative information embodied in solutions, rather than just to learn to develop formulas for solutions.