Organic Electronics


Book Description

This textbook provides a basic understanding of the principles of the field of organic electronics, through to their applications in organic devices. Useful for both students and practitioners, it is a teaching text as well as an invaluable resource that serves as a jumping-off point for those interested in learning, working and innovating in this rapidly growing field. Organics serve as a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to fit onto irregularly shaped surfaces such as foldable smart phones. Organic electronics is at the core of the global organic light emitting device (OLED) display industry. OLEDs also have potential uses as lighting sources. Other emerging organic electronic applications include organic solar cells, and organic thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book is a product of both one and two semester courses that have been taught over a period of more than two decades. It is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. A background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie somewhat outside of the current mainstream of the field, but are nevertheless important.




Organic Electronics II


Book Description

Like its predecessor this book is devoted to the materials, manufacturing and applications aspects of organic thin-film transistors. Once again authored by the most renowned experts from this fascinating and fast-moving area of research, it offers a joint perspective both broad and in-depth on the latest developments in the areas of materials chemistry, transport physics, materials characterization, manufacturing technology, and circuit integration of organic transistors. With its many figures and detailed index, this book once again also serves as a ready reference.




Organic Electronics


Book Description

Edited and written by the leading researchers and engineers from such companies as Philips, 3M, Xerox, Infineon, PlasticLogic, Eastman Kodak, Dupont, AIXTRON, and Hueck Folien, this book presents unrivalled and undiluted expertise from those who know best how to assess the risks, opportunities and where this technology is really heading. As such, this practical approach complements the more scientific and fundamentals-oriented literature on the market by providing readers with a first-hand insight into industrial activities to commercialize organic electronics. Following an introduction to the topic, including the history, motivation, benefits and potentials, it reviews recent advances and covers all three important facets of organic electronics: the chemical compounds and materials, manufacturing techniques, and the resulting devices together with their current applications.




Organic Electronics 2


Book Description

Due to their special properties, organic semiconductors enable the development of large-area, low-cost devices, paving the way for flexible and nomadic applications that advantageously replace those made with traditional semiconductors. In this second volume, we study the main applications of organic semiconductors, such as organic light-emitting diodes (OLEDs), solar cells (OPVs) and organic field-effect transistors (OFETs). The commercialization of these new devices is then discussed within the Brabec triangle framework, in which yield, stability and production costs are the key factors. We also address the environmental impact of organic devices for their future development. This book presents the application side of organic electronics from a technological, economic and environmental perspective. It is intended for researchers and students in university programs or engineering schools specializing in electronics, energy and materials.




Organic Electronic Materials


Book Description

This book brings together selected contributions both on the fundamental information on the physics and chemistry of these materials, new physical ideas and decisive experiments. It constitutes both an insightful treatise and a handy reference for specialists and graduate students working in solid state physics and chemistry, material science and related fields.




Electronic Processes in Organic Electronics


Book Description

The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic materials). Thus the book is also useful for experts working in physics, chemistry, and related engineering and industrial fields.




Organic Electronics


Book Description

Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called “plastic chips” ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.




Electronic Processes in Organic Semiconductors


Book Description

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.




Electronic Structure of Organic Semiconductors


Book Description

Written in the perspective of an experimental chemist, this book puts together some fundamentals from chemistry, solid state physics and quantum chemistry, to help with understanding and predicting the electronic and optical properties of organic semiconductors, both polymers and small molecules. The text is intended to assist graduate students and researchers in the field of organic electronics to use theory to design more efficient materials for organic electronic devices such as organic solar cells, light emitting diodes and field effect transistors. After addressing some basic topics in solid state physics, a comprehensive introduction to molecular orbitals and band theory leads to a description of computational methods based on Hartree-Fock and density functional theory (DFT), for predicting geometry conformations, frontier levels and energy band structures. Topological defects and transport and optical properties are then addressed, and one of the most commonly used transparent conducting polymers, PEDOT:PSS, is described in some detail as a case study.




Organic Electronics


Book Description

In the near future, organic semiconductors may be used in a variety of products, including flat-screen TVs, e-book readers, and third-generation organic photovoltaics applications, to name just a few. While organic electronics has received increased attention in scientific journals, those working in this burgeoning field require more in-depth cover