Organic Light-Emitting Materials and Devices


Book Description

Organic Light-Emitting Materials and Devices provides a single source of information covering all aspects of OLEDs, including the systematic investigation of organic light-emitting materials, device physics and engineering, and manufacturing and performance measurement techniques. This Second Edition is a compilation of the advances made in recent years and of the challenges facing the future development of OLED technology. Featuring chapters authored by internationally recognized academic and industrial experts, this authoritative text: Introduces the history, fundamental physics, and potential applications of OLEDs Reviews the synthesis, properties, and device performance of electroluminescent materials used in OLEDs Reflects the current state of molecular design, exemplifying more than 600 light-emitting polymers and highlighting the most efficient materials and devices Explores small molecules-based OLEDs, detailing hole- and electron-injection and electron-transport materials, electron- and hole-blocking materials, sensitizers, and fluorescent and phosphorescent light-emitting materials Describes solution-processable phosphorescent polymer LEDs, energy transfer processes, polarized OLEDs, anode materials, and vapor deposition manufacturing techniques employed in OLED fabrication Discusses flexible display, the backplane circuit technology for organic light-emitting displays, and the latest microstructural characterization and performance measurement techniques Contains abundant diagrams, device configurations, and molecular structures clearly illutrating the presented ideas Organic Light-Emitting Materials and Devices, Second Edition offers a comprehensive overview of the OLED field and can serve as a primary reference for those needing additional information in any particular subarea of organic electroluminescence. This book should attract the attention of materials scientists, synthetic chemists, solid-state physicists, and electronic device engineers, as well as industrial managers and patent lawyers engaged in OLED-related business areas.




Organic Light-Emitting Materials and Devices


Book Description

New advances offer flexible, low-cost fabrication methods for light-emitting materials, particularly in display technologies. As researchers continue to develop novel applications for these materials, feasible solutions for large-scale manufacturing are increasingly important. Organic Light-Emitting Materials and Devices covers all aspects o




Organic Light Emitting Devices


Book Description

This high-class book reflects a decade of intense research, culminating in excellent successes over the last few years. The contributions from both academia as well as the industry leaders combine the fundamentals and latest research results with application know-how and examples of functioning displays. As a result, all the four important aspects of OLEDs are covered: - syntheses of the organic materials - physical theory of electroluminescence and device efficiency - device conception and construction - characterization of both materials and devices. The whole is naturally rounded off with a look at what the future holds in store. The editor, Klaus Muellen, is director of the highly prestigious MPI for polymer research in Mainz, Germany, while the authors include Nobel Laureate Alan Heeger, one of the most notable founders of the field, Richard Friend, as well as Ching Tang, Eastman Kodak's number-one OLED researcher, known throughout the entire community for his key publications.




OLED Fundamentals


Book Description

A Comprehensive Source for Taking on the Next Stage of OLED R&DOLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes brings together key topics across the field of organic light-emitting diodes (OLEDs), from fundamental chemistry and physics to practical materials science and engineering aspects to design and ma







Organic Photovoltaics


Book Description

Providing complementary viewpoints from academia as well as technology companies, this book covers the three most important aspects of successful device design: materials, device physics, and manufacturing technologies. It also offers an insight into commercialization concerns, such as packaging technologies, system integration, reel-to-reel large scale manufacturing issues and production costs. With an introduction by Nobel Laureate Alan Heeger.




A New Generation of Organic Light-Emitting Materials and Devices


Book Description

Since the invention of the first efficient organic light-emitting diodes (OLEDs) by C. T. Tang and S. VanSlyke, OLEDs have attracted close interest as a promising candidate for next-generation full-color displays and future solid-state lighting sources because of a number of advantages like high brightness and contrast, high luminous efficiency, fast response time, wide viewing angle, low power consumption, and light weight. The recombination of holes and electrons under electrical excitation typically generates 25% singlet excitons and 75% triplet excitons. For traditional fluorescent OLEDs, only 25% singlet excitons can be utilized to emit light, while the other 75% triplet excitons are generally wasted through nonradiative transition. By adopting noble metal phosphorescent complexes, an internal quantum efficiency (IQE) of 100% could be achieved by utilizing both the 25% singlet excitons and 75% triplet excitons. However, these phosphors usually contain nonrenewable and highcost iridium or platinum noble metals. Most recently, unity IQE has been readily achieved through noble metal-free purely organic emitters, such as thermally activated delayed fluorescence (TADF) emitters, hybridized local and charge-transfer state (HLCT) “hot exciton” emitters, binary- or ternary-mixed donor-acceptor exciplex emitters, and neutral p radical emitters, etc. In addition, the combination of conventional p-type hole-transport and n-type electron-transport materials in an appropriate device structure can also provide an uncommon efficiency. Both strategies are essential and attractive for high-performance and low-cost full-color displays and white OLED applications. This Research Topic mainly focus on this new generation of organic light-emitting materials and devices, including design, synthesis, and characterization of light-emitting organic molecules with tunable excited states, and their structural, electrical, and photophysical properties. Contributions relating to carrier transporting materials and corresponding device engineering are also included. Two mini reviews and thirteen original research articles by recognized academic experts in their respective fields are collected in this Research Topic, which will offer a broad perspective of noble metal-free organic light emitters, including conventional fluorescent emitters, TADF emitters, HLCT emitters, exciplex emitters, aggregation-induced emission (AIE) luminogens, and their corresponding devices. We believe this eBook should attract the attention of multidisciplinary researchers in the fields of materials science, organic synthesis, and electronic device engineering, especially for those engaged in OLED-related areas.




Advanced Functional Materials and Devices


Book Description

This book presents the select proceedings of the International Conference on Advanced Functional Materials and Devices (AFMD 2021). It highlights the advancements in area of functional materials which includes electronic, magnetic, optical, adaptive and dielectric materials that are required to develop new functionalities with better performance in this new era of technology. The topics covered include materials for energy harvesting, biomedical applications, environmental monitoring, photonics and optoelectronic devices, strategic applications and high energy physics. This book will be a useful reference for beginners, researchers, academicians and professionals working in the area of material science and its allied fields.




Surface and Interface Science, Volumes 9 and 10


Book Description

In ten volumes, this unique handbook covers all fundamental aspects of surface and interface science and offers a comprehensive overview of this research area for scientists working in the field, as well as an introduction for newcomers. Volume 1: Concepts and Methods Volume 2: Properties of Elemental Surfaces Volume 3: Properties of Composite Surfaces: Alloys, Compounds, Semiconductors Volume 4: Solid-Solid Interfaces and Thin Films Volume 5: Solid-Gas Interfaces I Volume 6: Solid-Gas Interfaces II Volume 7: Liquid and Biological Interfaces Volume 8: Interfacial Electrochemistry Volume 9: Applications of Surface Science I Volume 10: Applications of Surface Science II Content of Volumes 8 & 9: * Surface Analytics with X-Ray Photoelectron and Auger Electron Spectroscopy on Coated Steel Sheets * Applications of Graphene * Industrial Heterogeneous Catalysis * Automotive Catalysis * High-Throughput Heterogeneous Catalyst Research, Development, Scale-Up, and Production Support * Industrial Separation of Insulating Particles: Triboelectric Charging * Friction: Friend and Foe * Surface Science and Flotation * Application of Surface Science to Corrosion * Electrons, Electrodes, and the Transformation of Organic Molecules * Self-Cleaning Surfaces: From Fundamental Aspect to Real Technical Applications * Thin Films: Sputtering, PVD Methods and Applications * Wafer Bonding * Superconformal Deposition * Spintronics: Surface and Interface Aspects * Device Efficiency of Organic Light-Emitting Diodes * Dye-Sensitized Solar Cells * Electronic Nose: Current Status and Future Trends * Surface Science in Batteries * Surface and Interface Science in Fuel Cells Research




Organic Light-emitting Materials and Devices IV


Book Description

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.