Electrospun Nanofibers


Book Description

Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. - Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers - Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers - Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development - Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science




Electrospinning


Book Description

Electrospinning is a technique used to produce nanofibres from a polymer solution using an electrostatic force. The technology is now being used to create materials for a wide variety of uses from tissue engineering and 3D printing to packaging materials and electronic sensors. This new book focusses on the recent developments in their design, process parameters and polymers-selection to enable the commercial applications of electrospinning. The initial chapters introduce the technique and then specific chapters focus on the different application areas showing the various approaches for successful implementation of this fabrication process towards commercialization from basic research and development. The book will be suitable for graduate students, academics and industrial entrepreneurs in materials science, polymer science and chemical engineering as well as those interested in the energy and health applications of the materials.







An Introduction to Electrospinning and Nanofibers


Book Description

The research and development of nanofibers has gained much prominence in recent years due to the heightened awareness of its potential applications in the medical, engineering and defense fields. Among the most successful methods for producing nanofibers is the electrospinning process. In this timely book, the areas of electrospinning and nanofibers are covered for the first time in a single volume. The book can be broadly divided into two parts: the first comprises descriptions of the electrospinning process and modeling to obtain nanofibers while the second describes the characteristics and applications of nanofibers. The material is aimed at both newcomers and experienced researchers in the area.




Nanobiomaterials Science, Development and Evaluation


Book Description

Nanobiomaterials Science, Development and Evaluation examines the practical aspects of producing nanostructured biomaterials for a range of applications. With a strong focus on materials, such as metals, ceramics, polymers, and composites, the book also examines nanostructured coatings and toxicology aspects. Chapters in Part One look at materials classes and their synthesis with information on all major material groups. Part Two focuses on nanostructured coatings and practical aspects associated with the use of nanobiomaterials in vivo. This book brings together the work of international contributors who are actively engaged on the forefront of research in their respective disciplines, and is a valuable resource for materials scientists in academia, industry, and all those who wish to broaden their knowledge in the allied field. - Focuses on the synthesis and evaluation techniques for a range of nanobiomaterials - Examines nanostructured inorganic coatings for biomaterials - Discusses issues related to the toxicology of nanobiomaterials - Presents the practical aspects of nanobiomaterials




Electrospun Materials and Their Allied Applications


Book Description

The aim of this book is to explore the history, fundamentals, manufacturing processes, optimization parameters, and applications of electrospun materials. The book includes various types of electrospun materials such as antimicrobial, smart, bioinspired systems. It focuses on the many application areas for electrospun materials such as energy storage and harvesting, catalysis, biomedical including gene delivery and tissue engineering, separation, adsorption and water treatment technologies, packaging. The book emphasizes the enhanced sustainable properties of electrospun materials, with the challenges and future developments being discussed in detail. The chapters are written by top-class researchers and experts from throughout the world.




Electrospun Polymer Nanofibers


Book Description

Discussing the electrospinning process, the book covers in great depth the current research interest in nanoscience and nanotechnology, especially electrospinning of polymer nanofibers. The main distinction of the proposed book from others devoted to the electrospinning process is in the consideration of the problem in question from the physical point of view. Focusing on physical aspects, the book contains physical basics regarding the unique features of electrospun polymer nanofibers and the electrospinning resulting in fabrication of these nanofibers.




Polymeric Nanofibers


Book Description

Polymeric Nanofibers will showcase recent developments in the production, characterization, and emerging use of nanofibers made from different polymers for a variety of purposes. Although it has been difficult to produce polymer fibers in the laboratory, electrospinning now makes it easier. Electrospinning, an electrohydrodynamical process for making thin polymer fibers with diameters in the range from around one nanometer to several thousands of nanometers, is simple and cost effective. Interest in other specialized routes to polymer nanofibers, including chemical synthesis, conventional textile fiber spinning, gas blowing, and other methods has been stimulated by the recent progress in electrospinning. Scientists and engineers in fields such as filtration, biomaterials, biomedical devices, chemical analysis, catalysis, aerospace, fiber reinforced composites, energy conversion, protective clothing, agriculture, and others can produce experimental quantities of nanofibers in their own laboratories, from a wide variety of polymers of interest to them. The number of papers and patents in electrospinning has grown at a rapid rate during the past decade, more than doubling each year since 1999.




Nanomanufacturing Handbook


Book Description

Breakthroughs in nanotechnology have been coming at a rapid pace over the past few years. This was fueled by significant worldwide investments by governments and industry. But if these promising young technologies cannot begin to show commercial viability soon, that funding is in danger of disappearing as investors lose their appetites and the economic and scientific promise of nanotechnology may not be realized. Scrutinizing the barriers to commercial scale-up of nanotechnologies, the Nanomanufacturing Handbook presents a broad survey of the research being done to bring nanotechnology out of the laboratory and into the factory. Current research into nanotechnology focuses on the underlying science, but as this forward-looking handbook points out, the immediate need is for research into scale-up, process robustness, and system integration issues. Taking that message to heart, this book collects cutting-edge research from top experts who examine such topics as surface-programmed assembly, fabrication and applications of single-walled carbon nanotubes (SWNTs) including nanoelectronics, manufacturing nanoelectrical contacts, room-temperature nanoimprint and nanocontact technologies, nanocontacts and switch reliability, defects and surface preparation, and other innovative, application-driven initiatives. In addition to these technical issues, the author provides a survey of the current state of nanomanufacturing in the United States—the first of its kind—and coverage also reaches into patenting nanotechnologies as well as regulatory and societal issues. With timely, authoritative coverage accompanied by numerous illustrations, the Nanomanufacturing Handbook clarifies the current challenges facing industrial-scale nanotechnologies and outlines advanced tools and strategies that will help overcome them.