Advanced Organic Chemistry


Book Description

The two-part, fifth edition of Advanced Organic Chemistry has been substantially revised and reorganized for greater clarity. The material has been updated to reflect advances in the field since the previous edition, especially in computational chemistry. Part A covers fundamental structural topics and basic mechanistic types. It can stand-alone; together, with Part B: Reaction and Synthesis, the two volumes provide a comprehensive foundation for the study in organic chemistry. Companion websites provide digital models for study of structure, reaction and selectivity for students and exercise solutions for instructors.




Supramolecular Photosensitive and Electroactive Materials


Book Description

In the last decade, much progress has been made in these materials. This book presents a highly coherent coverage of supramolecular, photosensitive and electroactive materials, namely those that have been extensively investigated for applications in fields of electronic and photonic technologies. This extensive reference provides broad coverage of on different types of materials, their processing, spectroscopic characterization, physical properties and device applications.The implications reach from molecular recognition in synthetic and natural complexes to exciting new applications in chemical technologies, materials, nanostructures, functional materials, new generation catalysts, signal transducers, medical and biomedical applications and novel separation techniques. All these applications rely on supramolecular properties such as molecular recognition, molecular information, and tailored molecular assemblies.This book is aimed to present a highly coherent coverage of supramolecular, photosenstive and electroactive materials and their applications in electronic and photonic technologies. The research behind these materials constitute some of the most actively pursued fields of science.Key Features* Covers supramolecular photosensitive and electroactive materials* Provides recent developments on metallophthalocyanines and polydiacetylenes* Include various types of supramolecular materials, their processing, fabrication, physical properties and device applications* Role of polyimides in microelectronic and tribology* Describes Photosynthetic and respiratory proteins, Dendrimers* A very special topic presented in a timely manner and in a format




Modern Supramolecular Gold Chemistry


Book Description

Filling a gap in our systematic knowledge of gold, this monograph covers the fundamental aspects, while also considering new applications of gold compounds in catalysis, as nanoparticles, and their potential application as luminescent compounds. Written by an eminent team of authors from academia, the book analyzes the current status of gold chemistry, its special characteristics, oxidation states and main type of complexes, before going on to look at the synthesis of supramolecular aggregates due to the formation of gold-gold, gold-metal interactions or other secondary bonds. Final sections deal with LEDs, solvoluminescent and electroluminescent materials, liquid crystals and catalysis. While of interest to advanced chemistry students, this book is also useful for researchers interested in the chemistry of gold and its applications, as well as those involved in metal-metal interactions, heteronuclear chemistry or in the optical properties of coordination compounds.




Early Main Group Metal Catalysis


Book Description

Early Main Group Metal Catalysis gives a comprehensive overview of catalytic reactions in the presence of group 1 and group 2 metals. Chapters are ordered to reaction type, contain educational elements and deal with concepts illustrated by examples that cover the main developments. After a short introduction on polar organometallic chemistry and synthesis of early main group metal complexes, a variety of catalytic reactions are described, e.g. polymerization of alkenes, hydroamination and phosphination reactions, hydrosilylation, hydroboration and hydrogenation catalysis, as well as enantioselective and Lewis-acid catalysis. The book addresses organic chemists and researchers in industry interested in the state-of-the-art and new possibilities of early main group metal catalysis as well as newcomers to the field. Written by a team of leaders in the field, it is a very welcome addition to the area of main group metal chemistry, and to the field of catalysis.




Supramolecular Catalysts


Book Description

The construction of catalysts by supramolecular forces has recently become a powerful tool and the role of noncovalent interactions can assist in designing new tools for the construction of effective and selective catalytic systems. It is unquestionably, vastly important to understand how different noncovalent interactions can be controlled or manipulated under appropriate reaction conditions. Supramolecular catalysts have had a tremendous impact on the syntheses of both chemical commodities and fine chemicals over the last 50 years, leading to the discovery of new reactions that were previously deemed impossible. This means that supramolecular chemistry plays a predominant role in accelerating or understanding chemical reactions.This book which addresses the above points is written by some of the leading contributors in this field and is intended for graduate students, researchers and academics working in supramolecular chemistry, organic chemistry, inorganic chemistry, and physical chemistry as well as researchers with an interest in the area of catalysis. The authors give examples illustrating the growth of the field, especially with special emphasis on new results published over the last decade. They also provide an explanation of fundamentals and topical research.




The Vocabulary and Concepts of Organic Chemistry


Book Description

This book is a basic reference providing concise, accurate definitions of the key terms and concepts of organic chemistry. Not simply a listing of organic compounds, structures, and nomenclatures, the book is organized into topical chapters in which related terms and concepts appear in close proximity to one another, giving context to the information and helping to make fine distinctions more understandable. Areas covered include: bonding, symmetry, stereochemistry, types of organic compounds, reactions, mechansims, spectroscopy, and photochemistry.




Iridium Catalysis


Book Description

From the contents: Robert H Crabtree: Introduction and History. - Montserrat Diéguez, Oscar Pàmies and Carmen Claver: Iridium-catalysed hydrogenation using phosphorous ligands. - David H. Woodmansee and Andreas Pfaltz: Iridium Catalyzed Asymmetric Hydrogenation of Olefins with Chiral N,P and C,N Ligands. - Ourida Saidi and Jonathan M J Williams: Iridium-catalyzed Hydrogen Transfer Reactions. - John F. Bower and Michael J. Krische: Formation of C-C Bonds via Iridium Catalyzed Hydrogenation and Transfer Hydrogenation. - Jongwook Choi, Alan S. Goldman: Ir-Catalyzed Functionalization of CH Bonds. - Mark P. Pouy and John F. Hartwig: Iridium-Catalyzed Allylic Substitution. - Daniel Carmona and Luis A. Oro: Iridium-catalyzed 1.3-dipolar cycloadditions.




A Textbook of Inorganic Chemistry – Volume 1


Book Description

An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.




Modern Inorganic Synthetic Chemistry


Book Description

The contributors to this book discuss inorganic synthesis reactions, dealing with inorganic synthesis and preparative chemistry under specific conditions. They go on to describe the synthesis, preparation and assembly of six important categories of compounds with wide coverage of distinct synthetic chemistry systems