p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects


Book Description

This proceedings volume contains articles related to the research presented at the 2019 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning non-abelian aspects This volume contains both original research articles as well as articles that contain both new research as well as survey some of these recent developments.




Berkeley Lectures on P-adic Geometry


Book Description

Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.




Abelian l-Adic Representations and Elliptic Curves


Book Description

This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one




p-adic Differential Equations


Book Description

Now in its second edition, this volume provides a uniquely detailed study of $P$-adic differential equations. Assuming only a graduate-level background in number theory, the text builds the theory from first principles all the way to the frontiers of current research, highlighting analogies and links with the classical theory of ordinary differential equations. The author includes many original results which play a key role in the study of $P$-adic geometry, crystalline cohomology, $P$-adic Hodge theory, perfectoid spaces, and algorithms for L-functions of arithmetic varieties. This updated edition contains five new chapters, which revisit the theory of convergence of solutions of $P$-adic differential equations from a more global viewpoint, introducing the Berkovich analytification of the projective line, defining convergence polygons as functions on the projective line, and deriving a global index theorem in terms of the Laplacian of the convergence polygon.




p-adic Hodge Theory


Book Description

This proceedings volume contains articles related to the research presented at the 2017 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connections to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It is the first of three volumes dedicated to p-adic Hodge theory.




Motivic Aspects of Hodge Theory


Book Description

These notes are based on a series of lectures given at the Tata Institute of Fundamental Research, Mumbai, in 2007, on the theme of Hodge theoretic motives associated to various geometric objects. Starting with the topological setting, the notes go on to Hodge theory and mixed Hodge theory on the cohomology of varieties. Degenerations, limiting mixed Hodge structures and the relation to singularities are addressed next. The original proof of Bittner's theorem on the Grothendieck group of varieties, with some applications, is presented as an appendix to one of the chapters. The situation of relative varieties is addressed next using the machinery of mixed Hodge modules. Chern classes for singular varieties are explained in the motivic setting using Bittner's approach, and their full functorial meaning is made apparent using mixed Hodge modules. An appendix explains the treatment of Hodge characteristic in relation with motivic integration and string theory. Throughout these notes, emphasis is placed on explaining concepts and giving examples.




Rational Points on Varieties


Book Description

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.




p-adic Differential Equations


Book Description

Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.




Variations on a Theorem of Tate


Book Description

Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations Gal(F¯¯¯¯/F)→PGLn(C) lift to GLn(C). The author takes special interest in the interaction of this result with algebraicity (for automorphic representations) and geometricity (in the sense of Fontaine-Mazur). On the motivic side, the author studies refinements and generalizations of the classical Kuga-Satake construction. Some auxiliary results touch on: possible infinity-types of algebraic automorphic representations; comparison of the automorphic and Galois “Tannakian formalisms” monodromy (independence-of-ℓ) questions for abstract Galois representations.




Sūgaku Expositions


Book Description