Classical Feedback Control


Book Description

This second edition textbook describes the design and implementation of high-performance feedback controllers for engineering systems. It emphasizes the frequency-domain design and methods based on Bode integrals, loop shaping, and nonlinear dynamic compensation. The authors include many problems and offer practical applications, illustrations, and




Classical Feedback Control with Nonlinear Multi-Loop Systems


Book Description

Classical Feedback Control with Nonlinear Multi-Loop Systems describes the design of high-performance feedback control systems, emphasizing the frequency-domain approach widely used in practical engineering. It presents design methods for high-order nonlinear single- and multi-loop controllers with efficient analog and digital implementations. Bode integrals are employed to estimate the available system performance and to determine the ideal frequency responses that maximize the disturbance rejection and feedback bandwidth. Nonlinear dynamic compensators provide global stability and improve transient responses. This book serves as a unique text for an advanced course in control system engineering, and as a valuable reference for practicing engineers competing in today’s industrial environment.




Index of Conference Proceedings


Book Description







Handbook of Advanced Plasma Processing Techniques


Book Description

Pattern transfer by dry etching and plasma-enhanced chemical vapor de position are two of the cornerstone techniques for modern integrated cir cuit fabrication. The success of these methods has also sparked interest in their application to other techniques, such as surface-micromachined sen sors, read/write heads for data storage and magnetic random access memory (MRAM). The extremely complex chemistry and physics of plasmas and their interactions with the exposed surfaces of semiconductors and other materi als is often overlooked at the manufacturing stage. In this case, the process is optimized by an informed "trial-and-error" approach which relies heavily on design-of-experiment techniques and the intuition of the process engineer. The need for regular cleaning of plasma reactors to remove built-up reaction or precursor gas products adds an extra degree of complexity because the interaction of the reactive species in the plasma with the reactor walls can also have a strong effect on the number of these species available for etching or deposition. Since the microelectronics industry depends on having high process yields at each step of the fabrication process, it is imperative that a full understanding of plasma etching and deposition techniques be achieved.