Pappus of Alexandria: Book 4 of the Collection


Book Description

Although not so well known today, Book 4 of Pappus’ Collection is one of the most important and influential mathematical texts from antiquity. The mathematical vignettes form a portrait of mathematics during the Hellenistic "Golden Age", illustrating central problems – for example, squaring the circle; doubling the cube; and trisecting an angle – varying solution strategies, and the different mathematical styles within ancient geometry. This volume provides an English translation of Collection 4, in full, for the first time, including: a new edition of the Greek text, based on a fresh transcription from the main manuscript and offering an alternative to Hultsch’s standard edition, notes to facilitate understanding of the steps in the mathematical argument, a commentary highlighting aspects of the work that have so far been neglected, and supporting the reconstruction of a coherent plan and vision within the work, bibliographical references for further study.




Pappus of Alexandria Book 7 of the Collection


Book Description

The seventh book of Pappus's Collection, his commentary on the Domain (or Treasury) of Analysis, figures prominently in the history of both ancient and modern mathematics: as our chief source of information concerning several lost works of the Greek geometers Euclid and Apollonius, and as a book that inspired later mathematicians, among them Viete, Newton, and Chasles, to original discoveries in their pursuit of the lost science of antiquity. This presentation of it is concerned solely with recovering what can be learned from Pappus about Greek mathematics. The main part of it comprises a new edition of Book 7; a literal translation; and a commentary on textual, historical, and mathematical aspects of the book. It proved to be convenient to divide the commentary into two parts, the notes to the text and translation, and essays about the lost works that Pappus discusses. The first function of an edition of this kind is, not to expose new discoveries, but to present a reliable text and organize the accumulated knowledge about it for the reader's convenience. Nevertheless there are novelties here. The text is based on a fresh transcription of Vat. gr. 218, the archetype of all extant manuscripts, and in it I have adopted numerous readings, on manuscript authority or by emendation, that differ from those of the old edition of Hultsch. Moreover, many difficult parts of the work have received little or no commentary hitherto.




Pappus of Alexandria and the Mathematics of Late Antiquity


Book Description

This book is at once an analytical study of one of the most important mathematical texts of antiquity, the Mathematical Collection of the fourth-century AD mathematician Pappus of Alexandria, and also an examination of the work's wider cultural setting. An important first chapter looks at the mathematicians of the period and how mathematics was perceived by people at large. The central chapters of the book analyse sections of the Collection, identifying features typical of Pappus's mathematical practice. The final chapter draws together the various threads and presents a fuller description of Pappus's mathematical 'agenda'. This is one of few books to deal extensively with the mathematics of Late Antiquity. It sees Pappus's text as part of a wider context and relates it to other contemporary cultural practices and opens avenues to research into the public understanding of mathematics and mathematical disciplines in antiquity.




Making up Numbers: A History of Invention in Mathematics


Book Description

Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of ‘infinity’ and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.




Ptolemy's Almagest


Book Description

Ptolemy's Almagest is one of the most influential scientific works in history. A masterpiece of technical exposition, it was the basic textbook of astronomy for more than a thousand years, and still is the main source for our knowledge of ancient astronomy. This translation, based on the standard Greek text of Heiberg, makes the work accessible to English readers in an intelligible and reliable form. It contains numerous corrections derived from medieval Arabic translations and extensive footnotes that take account of the great progress in understanding the work made in this century, due to the discovery of Babylonian records and other researches. It is designed to stand by itself as an interpretation of the original, but it will also be useful as an aid to reading the Greek text.




Geometry


Book Description

Greek ideas about geometry, straight-edge and compass constructions, and the nature of mathematical proof dominated mathematical thought for about 2,000 years.




The History of Mathematical Proof in Ancient Traditions


Book Description

This radical, profoundly scholarly book explores the purposes and nature of proof in a range of historical settings. It overturns the view that the first mathematical proofs were in Greek geometry and rested on the logical insights of Aristotle by showing how much of that view is an artefact of nineteenth-century historical scholarship. It documents the existence of proofs in ancient mathematical writings about numbers and shows that practitioners of mathematics in Mesopotamian, Chinese and Indian cultures knew how to prove the correctness of algorithms, which are much more prominent outside the limited range of surviving classical Greek texts that historians have taken as the paradigm of ancient mathematics. It opens the way to providing the first comprehensive, textually based history of proof.







Challenging Problems in Geometry


Book Description

Collection of nearly 200 unusual problems dealing with congruence and parallelism, the Pythagorean theorem, circles, area relationships, Ptolemy and the cyclic quadrilateral, collinearity and concurrency and more. Arranged in order of difficulty. Detailed solutions.




Isagogical Crossroads from the Early Imperial Age to the End of Antiquity


Book Description

This book explores how introductory methods shaped intellectual activity in various fields of thought of the post-Hellenistic Age and Late Antiquity by framing them in a wider interdisciplinary framework.