Parallel and Distributed Systems, 1994 International Conference On


Book Description

The complete proceedings of the December 1994 conference, containing some 120 papers, addresses, and sessions on topics such as teraflop computing, architecture-independent parallel programming, parallel algorithms, FDDI/ATM networks, load balancing, distributed mutual exclusion, interconnection net




Proceedings of the 1995 International Conference on Parallel Processing


Book Description

This set of technical books contains all the information presented at the 1995 International Conference on Parallel Processing. This conference, held August 14 - 18, featured over 100 lectures from more than 300 contributors, and included three panel sessions and three keynote addresses. The international authorship includes experts from around the globe, from Texas to Tokyo, from Leiden to London. Compiled by faculty at the University of Illinois and sponsored by Penn State University, these Proceedings are a comprehensive look at all that's new in the field of parallel processing.




1997 International Conference on Parallel and Distributed Systems


Book Description

Aimed at researchers, professors, practitioners, students and other computing professionals, this work looks at: architectures; parallel and distributed computation; networks; mobile computing and communication; parallel language and compiler; and cache/memory.




Proceedings of the 1995 International Conference on Parallel Processing


Book Description

This set of technical books contains all the information presented at the 1995 International Conference on Parallel Processing. This conference, held August 14 - 18, featured over 100 lectures from more than 300 contributors, and included three panel sessions and three keynote addresses. The international authorship includes experts from around the globe, from Texas to Tokyo, from Leiden to London. Compiled by faculty at the University of Illinois and sponsored by Penn State University, these Proceedings are a comprehensive look at all that's new in the field of parallel processing.




Tools and Environments for Parallel and Distributed Systems


Book Description

Developing correct and efficient software is far more complex for parallel and distributed systems than it is for sequential processors. Some of the reasons for this added complexity are: the lack of a universally acceptable parallel and distributed programming paradigm, the criticality of achieving high performance, and the difficulty of writing correct parallel and distributed programs. These factors collectively influence the current status of parallel and distributed software development tools efforts. Tools and Environments for Parallel and Distributed Systems addresses the above issues by describing working tools and environments, and gives a solid overview of some of the fundamental research being done worldwide. Topics covered in this collection are: mainstream program development tools, performance prediction tools and studies; debugging tools and research; and nontraditional tools. Audience: Suitable as a secondary text for graduate level courses in software engineering and parallel and distributed systems, and as a reference for researchers and practitioners in industry.




Proceedings of the 17th Annual International Symposium on High Performance Computing Systems and Applications and the OSCAR Symposium


Book Description

The 17th annual International Symposium on High Performance Systems and Applications (HPCS 2003) and the first OSCAR Symposium were held in Sherbrooke, Quebec Canada, May 11-14, 2003. The proceedings cover various areas of High Performance Computing, from specific scientific applications to computer architecture. OSCAR is an Open Source clustering software suite for building, maintaining, and using high performance clusters.




Input/Output in Parallel and Distributed Computer Systems


Book Description

Input/Output in Parallel and Distributed Computer Systems has attracted increasing attention over the last few years, as it has become apparent that input/output performance, rather than CPU performance, may be the key limiting factor in the performance of future systems. This I/O bottleneck is caused by the increasing speed mismatch between processing units and storage devices, the use of multiple processors operating simultaneously in parallel and distributed systems, and by the increasing I/O demands of new classes of applications, like multimedia. It is also important to note that, to varying degrees, the I/O bottleneck exists at multiple levels of the memory hierarchy. All indications are that the I/O bottleneck will be with us for some time to come, and is likely to increase in importance. Input/Output in Parallel and Distributed Computer Systems is based on papers presented at the 1994 and 1995 IOPADS workshops held in conjunction with the International Parallel Processing Symposium. This book is divided into three parts. Part I, the Introduction, contains four invited chapters which provide a tutorial survey of I/O issues in parallel and distributed systems. The chapters in Parts II and III contain selected research papers from the 1994 and 1995 IOPADS workshops; many of these papers have been substantially revised and updated for inclusion in this volume. Part II collects the papers from both years which deal with various aspects of system software, and Part III addresses architectural issues. Input/Output in Parallel and Distributed Computer Systems is suitable as a secondary text for graduate level courses in computer architecture, software engineering, and multimedia systems, and as a reference for researchers and practitioners in industry.




Distributed Systems


Book Description

Distributed Systems Comprehensive textbook resource on distributed systems—integrates foundational topics with advanced topics of contemporary importance within the field Distributed Systems: Theory and Applications is organized around three layers of abstractions: networks, middleware tools, and application framework. It presents data consistency models suited for requirements of innovative distributed shared memory applications. The book also focuses on distributed processing of big data, representation of distributed knowledge and management of distributed intelligence via distributed agents. To aid in understanding how these concepts apply to real-world situations, the work presents a case study on building a P2P Integrated E-Learning system. Downloadable lecture slides are included to help professors and instructors convey key concepts to their students. Additional topics discussed in Distributed Systems: Theory and Applications include: Network issues and high-level communication tools Software tools for implementations of distributed middleware. Data sharing across distributed components through publish and subscribe-based message diffusion, gossip protocol, P2P architecture and distributed shared memory. Consensus, distributed coordination, and advanced middleware for building large distributed applications Distributed data and knowledge management Autonomy in distributed systems, multi-agent architecture Trust in distributed systems, distributed ledger, Blockchain and related technologies. Researchers, industry professionals, and students in the fields of science, technology, and medicine will be able to use Distributed Systems: Theory and Applications as a comprehensive textbook resource for understanding distributed systems, the specifics behind the modern elements which relate to them, and their practical applications.




Performance Evaluation, Prediction and Visualization of Parallel Systems


Book Description

Performance Evaluation, Prediction and Visualization in Parallel Systems presents a comprehensive and systematic discussion of theoretics, methods, techniques and tools for performance evaluation, prediction and visualization of parallel systems. Chapter 1 gives a short overview of performance degradation of parallel systems, and presents a general discussion on the importance of performance evaluation, prediction and visualization of parallel systems. Chapter 2 analyzes and defines several kinds of serial and parallel runtime, points out some of the weaknesses of parallel speedup metrics, and discusses how to improve and generalize them. Chapter 3 describes formal definitions of scalability, addresses the basic metrics affecting the scalability of parallel systems, discusses scalability of parallel systems from three aspects: parallel architecture, parallel algorithm and parallel algorithm-architecture combinations, and analyzes the relations of scalability and speedup. Chapter 4 discusses the methodology of performance measurement, describes the benchmark- oriented performance test and analysis and how to measure speedup and scalability in practice. Chapter 5 analyzes the difficulties in performance prediction, discusses application-oriented and architecture-oriented performance prediction and how to predict speedup and scalability in practice. Chapter 6 discusses performance visualization techniques and tools for parallel systems from three stages: performance data collection, performance data filtering and performance data visualization, and classifies the existing performance visualization tools. Chapter 7 describes parallel compiling-based, search-based and knowledge-based performance debugging, which assists programmers to optimize the strategy or algorithm in their parallel programs, and presents visual programming-based performance debugging to help programmers identify the location and cause of the performance problem. It also provides concrete suggestions on how to modify their parallel program to improve the performance. Chapter 8 gives an overview of current interconnection networks for parallel systems, analyzes the scalability of interconnection networks, and discusses how to measure and improve network performances. Performance Evaluation, Prediction and Visualization in Parallel Systems serves as an excellent reference for researchers, and may be used as a text for advanced courses on the topic.




Software Visualisation


Book Description

The term ?software visualisation? refers to the graphical display of characteristics and behaviour of all aspects of software: design and analysis methods, systems, programs and algorithms. The purpose of this book is to collect and compare different experiences of software visualisation both from fundamental and applied viewpoints.The book is divided into four parts, covering important aspects of software visualisation. Part 1 covers a survey on existing software visualisation tools and environments, the strategies for making a software visualisation system language independent, and program animation for C language. Part 2 presents topics and techniques on graph drawing, which supports efficient and aesthetically pleasing visualisation. Some recently developed graph drawing systems and techniques used are described. Part 3 discusses visual programming concepts and techniques for supporting parallel and heterogeneous distributed programming. Part 4 includes several case studies of software visualisation, concentrating on the broader field of software engineering ranging from software metrics to reverse engineering.