Parallel Computing on Distributed Memory Multiprocessors


Book Description

Advances in microelectronic technology have made massively parallel computing a reality and triggered an outburst of research activity in parallel processing architectures and algorithms. Distributed memory multiprocessors - parallel computers that consist of microprocessors connected in a regular topology - are increasingly being used to solve large problems in many application areas. In order to use these computers for a specific application, existing algorithms need to be restructured for the architecture and new algorithms developed. The performance of a computation on a distributed memory multiprocessor is affected by the node and communication architecture, the interconnection network topology, the I/O subsystem, and the parallel algorithm and communication protocols. Each of these parametersis a complex problem, and solutions require an understanding of the interactions among them. This book is based on the papers presented at the NATO Advanced Study Institute held at Bilkent University, Turkey, in July 1991. The book is organized in five parts: Parallel computing structures and communication, Parallel numerical algorithms, Parallel programming, Fault tolerance, and Applications and algorithms.




Algorithms and Parallel Computing


Book Description

There is a software gap between the hardware potential and the performance that can be attained using today's software parallel program development tools. The tools need manual intervention by the programmer to parallelize the code. Programming a parallel computer requires closely studying the target algorithm or application, more so than in the traditional sequential programming we have all learned. The programmer must be aware of the communication and data dependencies of the algorithm or application. This book provides the techniques to explore the possible ways to program a parallel computer for a given application.




Shared Memory Multiprocessing


Book Description

Shared memory multiprocessors are becoming the dominant architecture for small-scale parallel computation. This book is the first to provide a coherent review of current research in shared memory multiprocessing in the United States and Japan. It focuses particularly on scalable architecture that will be able to support hundreds of microprocessors as well as on efficient and economical ways of connecting these fast microprocessors. The 20 contributions are divided into sections covering the experience to date with multiprocessors, cache coherency, software systems, and examples of scalable shared memory multiprocessors.




Parallel Programming in OpenMP


Book Description

Software -- Programming Techniques.




Scalable Shared-Memory Multiprocessing


Book Description

Dr. Lenoski and Dr. Weber have experience with leading-edge research and practical issues involved in implementing large-scale parallel systems. They were key contributors to the architecture and design of the DASH multiprocessor. Currently, they are involved with commercializing scalable shared-memory technology.




Parallel Computer Architecture


Book Description

This book outlines a set of issues that are critical to all of parallel architecture--communication latency, communication bandwidth, and coordination of cooperative work (across modern designs). It describes the set of techniques available in hardware and in software to address each issues and explore how the various techniques interact.




Programming Massively Parallel Processors


Book Description

Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing




Foundations of Multithreaded, Parallel, and Distributed Programming


Book Description

Foundations of Multithreaded, Parallel, and Distributed Programming covers, and then applies, the core concepts and techniques needed for an introductory course in this subject. Its emphasis is on the practice and application of parallel systems, using real-world examples throughout. Greg Andrews teaches the fundamental concepts of multithreaded, parallel and distributed computing and relates them to the implementation and performance processes. He presents the appropriate breadth of topics and supports these discussions with an emphasis on performance. Features Emphasizes how to solve problems, with correctness the primary concern and performance an important, but secondary, concern Includes a number of case studies which cover such topics as pthreads, MPI, and OpenMP libraries, as well as programming languages like Java, Ada, high performance Fortran, Linda, Occam, and SR Provides examples using Java syntax and discusses how Java deals with monitors, sockets, and remote method invocation Covers current programming techniques such as semaphores, locks, barriers, monitors, message passing, and remote invocation Concrete examples are executed with complete programs, both shared and distributed Sample applications include scientific computing and distributed systems 0201357526B04062001




Applied Parallel Computing


Book Description

The book provides a practical guide to computational scientists and engineers to help advance their research by exploiting the superpower of supercomputers with many processors and complex networks. This book focuses on the design and analysis of basic parallel algorithms, the key components for composing larger packages for a wide range of applications.




Parallel Processing for Computer Graphics


Book Description

Green provides background information on both computer graphics and parallel computers and then goes on to describe how a distributed memory multiprocessor can be used to effectively implement the ray tracing algorithm.