Robot Analysis


Book Description

Complete, state-of-the-art coverage of robot analysis This unique book provides the fundamental knowledge needed for understanding the mechanics of both serial and parallel manipulators. Presenting fresh and authoritative material on parallel manipulators that is not available in any other resource, it offers an in-depth treatment of position analysis, Jacobian analysis, statics and stiffness analysis, and dynamical analysis of both types of manipulators, including a discussion of industrial and research applications. It also features: * The homotopy continuation method and dialytic elimination method for solving polynomial systems that apply to robot kinematics * Numerous worked examples and problems to reinforce learning * An extensive bibliography offering many resources for more advanced study Drawing on Dr. Lung-Wen Tsai's vast experience in the field as well as recent research publications, Robot Analysis is a first-rate text for upper-level undergraduate and graduate students in mechanical engineering, electrical engineering, and computer studies, as well as an excellent desktop reference for robotics researchers working in industry or in government.




Parallel Manipulators


Book Description

Parallel manipulators are characterized as having closed-loop kinematic chains. Compared to serial manipulators, which have open-ended structure, parallel manipulators have many advantages in terms of accuracy, rigidity and ability to manipulate heavy loads. Therefore, they have been getting many attentions in astronomy to flight simulators and especially in machine-tool industries.The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in parallel manipulators. This book mainly introduces advanced kinematic and dynamic analysis methods and cutting edge control technologies for parallel manipulators. Even though this book only contains several samples of research activities on parallel manipulators, I believe this book can give an idea to the reader about what has been done in the field recently, and what kind of open problems are in this area.




Serial and Parallel Robot Manipulators


Book Description

The robotics is an important part of modern engineering and is related to a group of branches such as electric




Parallel Robots


Book Description

Parallel structures are more effective than serial ones for industrial automation applications that require high precision and stiffness, or a high load capacity relative to robot weight. Although many industrial applications have adopted parallel structures for their design, few textbooks introduce the analysis of such robots in terms of dynamics




Parallel Robotic Machine Tools


Book Description

Research and development of various parallel mechanism applications in engineering are now being performed more and more actively in every industrial field. Parallel robot based machine tools development is considered a key technology of robot applications in manufacturing industries. The material covered here describes the basic theory, approaches, and algorithms in the field of parallel robot based machine tools. In addition families of new alternative mechanical architectures which can be used for machine tools with parallel architecture are introduced. Given equal importance is the design of mechanism systems such as kinematic analysis, stiffness analysis, kinetostatic modeling, and optimization.




Parallel Manipulators of Robots


Book Description

This book describes the theoretical framework of parallel manipulators and presents examples of their application. The theoretical part begins with the theory of parallel manipulator synthesis. Working on this basis, various topology designs of one-loop and multiloop parallel manipulators are then obtained. The next section describes the zero parameters method for the analysis of mechanism (manipulator) structure with closed kinematic circuits, and includes examples of its application, highlighting its advantages compared to traditional methods. The book then presents the redundant parameters method for determining the position of special parallel manipulator links, and discusses its application in solving the direct problem of link position for multiloop manipulators. It also addresses one-loop and multiloop manipulators, and includes a solution for the direct and inverse link position problems of kinematics. In closing, the book presents a range of potential applications for parallel manipulator. These examples are intended to promote the development and implementation of new engineering solutions, e.g. in seismic protection systems, renewable energy and other areas. The book includes a wealth of material that can be used for teaching undergraduate, graduate and PhD students majoring in robotics, automation and related fields, and can also be used by researchers to solve problems in connection with introducing robotics technologies.




Parallel Robots


Book Description

Parallel robots are closed-loop mechanisms presenting very good performances in terms of accuracy, velocity, rigidity and ability to manipulate large loads. They have been used in a large number of applications ranging from astronomy to flight simulators and are becoming increasingly popular in the field of machine-tool industry. This book presents a complete synthesis of the latest results on the possible mechanical architectures, analysis and synthesis of this type of mechanism. It is intended to be used by students (with over 150 exercises and numerous internet addresses), researchers (with over 650 references and anonymous ftp access to the code of some algorithms presented in this book) and engineers (for which practical results, mistakes to avoid, and applications are presented). Since the publication of the first edition (2000) there has been an impressive increase in terms of study and use of this kind of structure that are reported in this book. This second edition has been completely overhauled. The initial chapter on kinematics has been split into Inverse Kinematics and Direct Kinematics. A new chapter on calibration was added. The other chapters have also been rewritten to a large extent. The reference section has been updated to include around 45% new works that appeared after the first edition.




Parallel Robots


Book Description

Parallel robots are closed-loop mechanisms presenting very good performances in terms of accuracy, rigidity and ability to manipulate large loads. Parallel robots have been used in a large number of applications ranging from astronomy to flight simulators and are becoming increasingly popular in the field of machine-tool industry. This book presents a complete synthesis of the latest results on the possible mechanical architectures, analysis and synthesis of this type of mechanism. It is intended to be used by students (with over 100 exercises and numerous Internet addresses), researchers (with over 500 references and anonymous ftp access to the code of some algorithms presented in this book) and engineers (for which practical results and applications are presented).




Cable-Driven Parallel Robots


Book Description

Cable-driven parallel robots are a new kind of lightweight manipulators with excellent scalability in terms of size, payload, and dynamics capacities. For the first time, a comprehensive compendium is presented of the field of cable-driven parallel robots. A thorough theory of cable robots is setup leading the reader from first principles to the latest results in research. The main topics covered in the book are classification, terminology, and fields of application for cable-driven parallel robots. The geometric foundation of the standard cable model is introduced followed by statics, force distribution, and stiffness. Inverse and forward kinematics are addressed by elaborating efficient algorithms. Furthermore, the workspace is introduced and different algorithms are detailed. The book contains the dynamic equations as well as simulation models with applicable parameters. Advanced cable models are described taking into account pulleys, elastic cables, and sagging cables. For practitioner, a descriptive design method is stated including methodology, parameter synthesis, construction design, component selection, and calibration. Rich examples are presented by means of simulation results from sample robots as well as experimental validation on reference demonstrators. The book contains a representative overview of reference demonstrator system. Tables with physical parameters for geometry, cable properties, and robot parameterizations support case studies and are valuable references for building custom cable robots. For scientist, the book provides the starting point to address new scientific challenges as open problems are named and a commented review of the literature on cable robot with more than 500 references are given.




Cable-Driven Parallel Robots


Book Description

Gathering presentations to the First International Conference on Cable-Driven Parallel Robots, this book covers classification and definition, kinematics, workspace analysis, cable modeling, hardware/prototype development, control and calibration and more.