Parameterization Schemes


Book Description

Contents: 1.




Diagnostics for and Evaluations of New Physical Parameterization Schemes for Global NWP Models


Book Description

The procedures and results of a study undertaken to evaluate and assess the impacts of three new parameterization schemes for the GL global spectral model as a 3-4 day range forecast model are described. The tree parameterization schemes are one each for the boundary-layer physics, moist convection and heating due to solar and terrestrial radiations. These schemes are incorporated either singly or jointly into a rhomboidal-30, 12-layer global spectral model for four-day simulations using FGGE III- a data as input. Evaluation and assessment are made on the basis of two kinds of global statistics: mean and root-mean-square errors, and on their magnitudes and distributions. The statistics are generated for both the primary, that is, prognostic, variables, and supplementary variables such as zonal-mean and zonal-eddies energy densities. The new moist convection scheme has been found to increase convective activity significantly and maintain it throughout the four-day period. It also warms and dries the middle troposphere, but produces rainfall far in excess of the climatology. The radiation parameterization has been found to cool the atmosphere and reduce its specific humidity. It counterbalances enhanced heating and moistening brought about by the new boundary-layer and moist convection schemes and eliminates the systematic warming of the old model.







The Representation of Cumulus Convection in Numerical Models


Book Description

This book presents descriptions of numerical models for testing cumulus in cloud fields. It is divided into six parts. Part I provides an overview of the problem, including descriptions of cumulus clouds and the effects of ensembles of cumulus clouds on mass, momentum, and vorticity distributions. A review of closure assumptions is also provided. A review of "classical" convection schemes in widespread use is provided in Part II. The special problems associated with the representation of convection in mesoscale models are discussed in Part III, along with descriptions of some of the commonly used mesoscale schemes. Part IV covers some of the problems associated with the representation of convection in climate models, while the parameterization of slantwise convection is the subject of Part V.







Parameterization Of Atmospheric Convection (In 2 Volumes)


Book Description

Precipitating atmospheric convection is fundamental to the Earth's weather and climate. It plays a leading role in the heat, moisture and momentum budgets. Appropriate modelling of convection is thus a prerequisite for reliable numerical weather prediction and climate modelling. The current standard approach is to represent it by subgrid-scale convection parameterization.Parameterization of Atmospheric Convection provides, for the first time, a comprehensive presentation of this important topic. The two-volume set equips readers with a firm grasp of the wide range of important issues, and thorough coverage is given of both the theoretical and practical aspects. This makes the parameterization problem accessible to a wider range of scientists than before. At the same time, by providing a solid bottom-up presentation of convection parameterization, this set is the definitive reference point for atmospheric scientists and modellers working on such problems.Volume 1 of this two-volume set focuses on the basic principles: introductions to atmospheric convection and tropical dynamics, explanations and discussions of key parameterization concepts, and a thorough and critical exploration of the mass-flux parameterization framework, which underlies the methods currently used in almost all operational models and at major climate modelling centres. Volume 2 focuses on the practice, which also leads to some more advanced fundamental issues. It includes: perspectives on operational implementations and model performance, tailored verification approaches, the role and representation of cloud microphysics, alternative parameterization approaches, stochasticity, criticality, and symmetry constraints.







Proceedings Of The 19th Annual Meeting Of The Asia Oceania Geosciences Society (Aogs 2022)


Book Description

The 19th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2022) was held from 1st to 5th August 2022. This proceedings volume includes selected extended abstracts from a challenging array of presentations at this conference. The AOGS Annual Meeting is a leading venue for professional interaction among researchers and practitioners, covering diverse disciplines of geosciences.




Land Surface Evaporation


Book Description

General circulation model (GCM) experiments in the late 1970's indicated that the climate is sensitive to variations in evaporation at the land surface. Thus, in the context of climate modeling, it became important to develop techniques which would realistically estimate the evaporation flux on land. Land Surface Evaporation: Measurement and Parameterization discusses strategies for the use of experimental data in developing and testing parameterization schemes of the evaporation flux in GCM's. The book reviews state-of-the-art techniques, such as remote sensing, which measure evaporation fluxes over continental surfaces. It evaluates their relevance with respect to the various spatial and temporal scales of interest. This book will provide researchers in climatology, meteorology, hydrology and water management, and remote sensing with a thorough overview of current research in land surface evaporation. It will also give young scientists insight into surface processes.




Monthly Weather Review


Book Description