Partially Hyperbolic Dynamics, Laminations, and Teichmuller Flow


Book Description

This volume collects a set of contributions by participants of the Workshop Partially hyperbolic dynamics, laminations, and Teichmuller flow held at the Fields Institute in Toronto in January 2006. The Workshop brought together several leading experts in two very active fields of contemporary dynamical systems theory: partially hyperbolic dynamics and Teichmuller dynamics. They are unified by ideas coming from the theory of laminations and foliations, dynamical hyperbolicity, and ergodic theory. These are the main themes of the current volume. The volume contains both surveys and research papers on non-uniform and partial hyperbolicity, on dominated splitting and beyond (in Part I), Teichmuller dynamics with applications to interval exchange transformations and on the topology of moduli spaces of quadratic differentials (in Part II), foliations and laminations and other miscellaneous papers (in Part III). Taken together these papers provide a snapshot of the state of the art in some of the most active topics at the crossroads between dynamical systems, smooth ergodic theory, geometry and topology, suitable for advanced graduate students and researchers.Non-specialists will find the extensive, in-depth surveys especially useful.




Partially Hyperbolic Dynamics, Laminations, and Teichmuller Flow


Book Description

This volume collects a set of contributions by participants of the Workshop Partially hyperbolic dynamics, laminations, and Teichmuller flow held at the Fields Institute in Toronto in January 2006. The Workshop brought together several leading experts in two very active fields of contemporary dynamical systems theory: partially hyperbolic dynamics and Teichmuller dynamics. They are unified by ideas coming from the theory of laminations and foliations, dynamical hyperbolicity, and ergodic theory. These are the main themes of the current volume. The volume contains both surveys and research papers on non-uniform and partial hyperbolicity, on dominated splitting and beyond (in Part I), Teichmuller dynamics with applications to interval exchange transformations and on the topology of moduli spaces of quadratic differentials (in Part II), foliations and laminations and other miscellaneous papers (in Part III). Taken together these papers provide a snapshot of the state of the art in some of the most active topics at the crossroads between dynamical systems, smooth ergodic theory, geometry and topology, suitable for advanced graduate students and researchers.Non-specialists will find the extensive, in-depth surveys especially useful.







Thermodynamic Formalism


Book Description

This volume arose from a semester at CIRM-Luminy on “Thermodynamic Formalism: Applications to Probability, Geometry and Fractals” which brought together leading experts in the area to discuss topical problems and recent progress. It includes a number of surveys intended to make the field more accessible to younger mathematicians and scientists wishing to learn more about the area. Thermodynamic formalism has been a powerful tool in ergodic theory and dynamical system and its applications to other topics, particularly Riemannian geometry (especially in negative curvature), statistical properties of dynamical systems and fractal geometry. This work will be of value both to graduate students and more senior researchers interested in either learning about the main ideas and themes in thermodynamic formalism, and research themes which are at forefront of research in this area.




Holomorphic Dynamics and Renormalization


Book Description

Schwarzian derivatives and cylinder maps by A. Bonifant and J. Milnor Holomorphic dynamics: Symbolic dynamics and self-similar groups by V. Nekrashevych Are there critical points on the boundaries of mother hedgehogs? by D. K. Childers Finiteness for degenerate polynomials by L. DeMarco Cantor webs in the parameter and dynamical planes of rational maps by R. L. Devaney Simple proofs of uniformization theorems by A. A. Glutsyuk The Yoccoz combinatorial analytic invariant by C. L. Petersen and P. Roesch Bifurcation loci of exponential maps and quadratic polynomials: Local connectivity, triviality of fibers, and density of hyperbolicity by L. Rempe and D. Schleicher Rational and transcendental Newton maps by J. Ruckert Newton's method as a dynamical system: Efficient root finding of polynomials and the Riemann $\zeta$ function by D. Schleicher The external boundary of $M_2$ by V. Timorin Renormalization: Renormalization of vector fields by H. Koch Renormalization of arbitrary weak noises for one-dimensional critical dynamical systems: Summary of results and numerical explorations by O. Diaz-Espinosa and R. de la Llave KAM for the nonlinear Schrodinger equation--A short presentation by H. L. Eliasson and S. B. Kuksin Siegel disks and renormalization fixed points by M. Yampolsky




Translation Surfaces


Book Description

This textbook offers an accessible introduction to translation surfaces. Building on modest prerequisites, the authors focus on the fundamentals behind big ideas in the field: ergodic properties of translation flows, counting problems for saddle connections, and associated renormalization techniques. Proofs that go beyond the introductory nature of the book are deftly omitted, allowing readers to develop essential tools and motivation before delving into the literature. Beginning with the fundamental example of the flat torus, the book goes on to establish the three equivalent definitions of translation surface. An introduction to the moduli space of translation surfaces follows, leading into a study of the dynamics and ergodic theory associated to a translation surface. Counting problems and group actions come to the fore in the latter chapters, giving a broad overview of progress in the 40 years since the ergodicity of the Teichmüller geodesic flow was proven. Exercises are included throughout, inviting readers to actively explore and extend the theory along the way. Translation Surfaces invites readers into this exciting area, providing an accessible entry point from the perspectives of dynamics, ergodicity, and measure theory. Suitable for a one- or two-semester graduate course, it assumes a background in complex analysis, measure theory, and manifolds, while some familiarity with Riemann surfaces and ergodic theory would be beneficial.




Pseudo-differential Operators


Book Description

This volume is based on lectures given at the workshop on pseudo-differential operators held at the Fields Institute from December 11, 2006 to December 15, 2006. The two main themes of the workshop and hence this volume are partial differential equations and time-frequency analysis. The contents of this volume consist of five mini-courses for graduate students and post-docs, and fifteen papers on related topics. Of particular interest in this volume are the mathematical underpinnings, applications and ramifications of the relatively new Stockwell transform, which is a hybrid of the Gabor transform and the wavelet transform. The twenty papers in this volume reflect modern trends in the development of pseudo-differential operators.




Algebraic Curves and Cryptography


Book Description

Focusing on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields the topics covered in this volume include Schoof's $\ell$-adic point counting algorithm, the $p$-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on the Jacobians of $C_{ab}$ curves and zeta functions.




Modular Forms and String Duality


Book Description

"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.




Lectures on Global Optimization


Book Description

A large number of mathematical models in many diverse areas of science and engineering have lead to the formulation of optimization problems where the best solution (globally optimal) is needed. This book covers a small subset of important topics in global optimization with emphasis on theoretical developments and scientific applications.