Patch Clamping


Book Description

Patch clamping is a widely applied electrophysiological technique for the study of ion channels; membrane proteins that regulate the flow of ions across cellular membranes and therefore influence the physiology of all cells. Patch Clamping aims to cover the basic principles and practical applications of this important technique. Starting with a review of the history of patch clamping, the text then goes on to cover the basic principles, platforms, equipment and environmental control, and will also include coverage of preparation types, recording modes and analysis of results. This book will explain the basic principles and practical application of patch clamp electrophysiology Written in a non-technical style to ensure its broad appeal to novice users Takes a practical approach This self-contained guide provides everything a practising patch clamp electrophysiologist needs to know to master this technique, including an overview of membrane biophysics, standard experimental design, data analysis, and technical concerns




Patch Clamp Techniques


Book Description

Channels and transporters are multi-functional proteins that mediate substrate transport and signal transmission and simultaneously act as regulators for other proteins and biosensors for environmental materials. Patch clamping is an epoch-making technique that allows researchers to perform real-time measurements of electrogenic channel/transporter functions at the single/multiple molecular level. This book describes not only the conventional patch clamp techniques but also their newly developed variations or applications, such as perforated patch, slice patch, blind patch, in vivo patch, imaging patch, smart patch, and automated patch clamping. These patch clamp techniques are now essential and are extensively used across the life sciences and in related industries. With plain and practical descriptions of patch clamping and how to carry it out, especially for beginners, the book also shows how widely and exquisitely the patch clamp techniques can be applied by expert electrophysiologists. This work serves as a useful guide for young researchers and students in training and laboratory courses as well as for senior researchers who wish to extend their repertoire of techniques.




Patch-Clamp Analysis


Book Description

Patch-Clamp Analysis: Advanced Techniques describes in reproducible detail all applications that involve patch pipet. Beginning with updated basic patch-clamp techniques, the book presents the newest developments, ranging from fast external solution switching and the switching of the pipet solution during recording, to the loose patch, the perforated patch, and the patch cram detection technique. The advanced techniques covered combine molecular biology and imaging to produce the patch pipet with RT-PCR and fluorometric techniques.




Gigaseal Formation in Patch Clamping


Book Description

This book presents an investigation of gigaseal formation using micro/nanotechnology. The aims of the book are twofold. First, it explains the mechanisms of gigaseal formation using the latest discoveries. Second, it provides practical techniques for frequent formation of high resistance seals. The formation of a high-resistance electrical seal, also known as a gigaseal, between a cell membrane and a glass micropipette tip is essential in patch-clamp experiments. Even though four decades have passed since the introduction of the patch-clamping technique by Neher and Sakmann, gigaseal formation remains an obstacle in developing the high-throughput ion channel screening systems required by the pharmaceutical industry. Here the authors share their latest methods for achieving gigaseal formation and describe techniques that are highly desirable at both research and industrial levels. Nanotechnology has been found to be a powerful tool for studying and modifying glass micropipettes and in tackling the problem of gigaseal formation.




Patch Clamp Electrophysiology


Book Description

This volume describes a range of standard and novel methodological approaches used to probe ion channel function across different modalities. Chapters guide readers through methods and protocols from an introduction to the decades old patch clamp method for the ion channel neophyte to more complex, recent protocol advances, such as optogenetics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Patch Clamp Electrophysiology: Methods and Protocols aims to be a reference guide for current and future ion channel physiologists.




Patch-Clamp Applications and Protocols


Book Description

E. Neher and B. Sakman were the first to monitor the opening and closing of single ion channels and membranes by conductance measurements. In 1976, they used firepolished micropipets with a tip diameter of 3-5 pm to record currents from a small patch of the membranbe of sk- etal muscles, thereby decreasing background membrane noise. In order to reduce the dominant source of background noise-the leakage shunt under the pipet rim between m- the muscle membrane had to be treated brane and gla- enzymatically. Despite these early limitations, a new te- nique was born -the patch-clamp technique. The final bre- through came in 1981 when the same authors, in collaboration with 0. P. Hamill, A. Marty, and F. J. Sigworth, developed the gigaohm seal. Not only did this improve the quality of recordings, it was now possible to gently pull the membrane patch with the attached pipet off the cell and study its trapped ion channels in isolation. Another offshoot of the gigaohm seal technique was the whole-cell patch-clamp technique, in which the patch is ruptured without breaking the seal. This technique is really a sophisticated voltage-clamp technique and also allows for the altering of cytoplasmic constituents if the experimenter so wishes. The first part of Patch-Clamp Applications and Protocols presents modern developments associated with the techn- ogy of patch-clamp electrodes, of cell-free ion channel reco- ing, and of the whole-cell patch-clamp technique.




Patch-Clamp Methods and Protocols


Book Description

Since its inception, patch-clamp has continued to be widely considered the gold standard method to record ion channel activity. Patch-Clamp Methods and Protocols, Second Edition, provides a comprehensive collection of new techniques for the development of automated, high-throughput screening systems for pharmacological evaluation, the use of various patch-clamp configurations together with novel molecular biological and imaging methodologies and enhanced stimulation protocols and perfusion systems. Divided into sections on pharmacology, physiology and biophysics, the chapters cover methods to generate more physiologically relevant conditions for drug application and screening technologies, recently developed applications such as optogenetic stimulation, advances in whole-cell recordings in freely-moving animals and novel technologies to create custom microelectrodes designed for reducing the access resistance and improving the rate of molecular diffusion. Patch-clamp is an indispensable technique for conducting pharmacological, physiological and biophysical research aimed at understanding crucial aspects of cellular and network function. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Patch-Cla mp Methods and Protocols, Second Edition will provide a useful technical and methodological guide to diverse audiences of electrophysiologists, from students to experienced investigators.




Electrical Properties of Cells


Book Description

DeFelice presents this intricate subject in an easy-to-follow, stepwise fashion: he reviews the fundamentals of electricity; transfers those principles to a biological context; and expands the discussion to encompass the subject's practical dimensions. Clear definitions and intuitive descriptions characterize the presentation, which is complemented by over 150 drawings and graphs. Mathematics is kept to the minimum necessary. The text covers both excitable and non-excitable membranes and includes the plasma membrane as well as intracellular membranes. A unique, `electronics-made-simple' appendix, designed specifically for biologists, treats the operational amplifiers used in patch clamp, and other appendices offer solutions to equations and examples that illustrate principles.




Calcium Entry Channels in Non-Excitable Cells


Book Description

Calcium Entry Channels in Non-Excitable Cells focuses on methods of investigating the structure and function of non-voltage gated calcium channels. Each chapter presents important discoveries in calcium entry pathways, specifically dealing with the molecular identification of store-operated calcium channels which were reviewed by earlier volumes in the Methods in Signal Transduction series. Crystallographic and pharmacological approaches to the study of calcium channels of epithelial cells are also discussed. Calcium ion is a messenger in most cell types. Whereas voltage gated calcium channels have been studied extensively, the non-voltage gated calcium entry channel genes have only been identified relatively recently. The book will fill this important niche.




Patch-Clamp Analysis


Book Description

Continuing the research of the best-selling first edition, this second edition collects three more years of research in the ever-expanding study of the cell membrane. It covers the latest developments in the "traditional" patch techniques. This authoritative second edition updates the standard techniques while introducing three brand new, cutting-edge technical advances in the field. Thorough and timely, this edition is an invaluable resource.