PDE Dynamics


Book Description

This book provides an overview of the myriad methods for applying dynamical systems techniques to PDEs and highlights the impact of PDE methods on dynamical systems. Also included are many nonlinear evolution equations, which have been benchmark models across the sciences, and examples and techniques to strengthen preparation for research. PDE Dynamics: An Introduction is intended for senior undergraduate students, beginning graduate students, and researchers in applied mathematics, theoretical physics, and adjacent disciplines. Structured as a textbook or seminar reference, it can be used in courses titled Dynamics of PDEs, PDEs 2, Dynamical Systems 2, Evolution Equations, or Infinite-Dimensional Dynamics.




Nonlinear PDE's, Dynamics and Continuum Physics


Book Description

This volume contains the refereed proceedings of the conference on Nonlinear Partial Differential Equations, Dynamics and Continuum Physics which was held at Mount Holyoke College in Massachusetts, from July 19th to July 23rd, 1998. Models examined derive from a wide range of applications, including elasticity, thermoviscoelasticity, granular media, fluid dynamics, gas dynamics and conservation laws. Mathematical topics include existence theory and stability/instability of traveling waves, asymptotic behavior of solutions to nonlinear wave equations, effects of dissipation, mechanisms of blow-up, well-posedness and regularity, and fractal solutions. The text will be of interest to graduate students and researchers working in nonlinear partial differential equations and applied mathematics.




Nonlinear PDEs


Book Description

This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.




Effective Dynamics of Stochastic Partial Differential Equations


Book Description

Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension. - New techniques for extracting effective dynamics of infinite dimensional dynamical systems under uncertainty - Accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations - Solutions or hints to all Exercises




Random Perturbation of PDEs and Fluid Dynamic Models


Book Description

This volume explores the random perturbation of PDEs and fluid dynamic models. The text describes the role of additive and bilinear multiplicative noise, and includes examples of abstract parabolic evolution equations.




Dynamics of Partial Differential Equations


Book Description

This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties and results about radiation damping where waves lose energy through radiation. The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equations with very different physical origins and mathematical properties.




A Survey of Nonlinear Dynamics


Book Description

This book is intended to give a survey of the whole field of nonlinear dynamics (or ?chaos theory?) in compressed form. It covers quite a range of topics besides the standard ones, for example, pde dynamics and Galerkin approximations, critical phenomena and renormalization group approach to critical exponents. The many meanings or measures of ?chaos? in the literature are summarized. A precise definition of chaos based on a carefully limited sensitive dependence is offered. An application to quantum chaos is made. The treatment does not emphasize mathematical rigor but insists that the crucial concepts and theorems be mathematically well-defined. Thus topology plays a basic role. This alone makes this book unique among short surveys, where the inquisitive reader must usually be satisfied with colorful similes, analogies, and hand-waving arguments.Richard Ingraham graduated with B.S. summa cum laude in mathematics from Harvard college and with M.A. and Ph.D in Physics from Harvard Graduate School. He was granted the Sheldon Prize Traveling Fellowship by Harvard College and was a member of the Institute for Advanced Study at Princeton for two years.




Differential Equations and Dynamical Systems


Book Description

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.




Partial Differential Equations of Mathematical Physics


Book Description

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.




Data-Driven Science and Engineering


Book Description

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.