Pension Mathematics for Actuaries


Book Description




Pension Mathematics with Numerical Illustrations


Book Description

A text that quantifies and provides new or improved actuarial notation for long recognized pension cost concepts and procedures and, in certain areas, develops new insights and techniques. With the exception of the first few chapters, the text is a virtual rewrite of the first edition of 1977. Among the major additions are chapters on statutory funding requirements, pension accounting, funding policy analysis, asset allocation, and retiree health benefits.







Solutions Manual for Actuarial Mathematics for Life Contingent Risks


Book Description

"This manual presents solutions to all exercises from Actuarial Mathematics for Life Contingent Risks (AMLCR) by David C.M. Dickson, Mary R. Hardy, Howard Waters; Cambridge University Press, 2009. ISBN 9780521118255"--Pref.




An Introduction to Actuarial Mathematics


Book Description

to Actuarial Mathematics by A. K. Gupta Bowling Green State University, Bowling Green, Ohio, U. S. A. and T. Varga National Pension Insurance Fund. Budapest, Hungary SPRINGER-SCIENCE+BUSINESS MEDIA, B. V. A C. I. P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-5949-9 ISBN 978-94-017-0711-4 (eBook) DOI 10. 1007/978-94-017-0711-4 Printed on acid-free paper All Rights Reserved © 2002 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2002 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. To Alka, Mita, and Nisha AKG To Terezia and Julianna TV TABLE OF CONTENTS PREFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix CHAPTER 1. FINANCIAL MATHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1. Compound Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2. Present Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1. 3. Annuities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 CHAPTER 2. MORTALITy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2. 1 Survival Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2. 2. Actuarial Functions of Mortality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2. 3. Mortality Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 CHAPTER 3. LIFE INSURANCES AND ANNUITIES . . . . . . . . . . . . . . . . . . . . . 112 3. 1. Stochastic Cash Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3. 2. Pure Endowments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3. 3. Life Insurances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3. 4. Endowments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 3. 5. Life Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 CHAPTER 4. PREMIUMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 4. 1. Net Premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 4. 2. Gross Premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Vll CHAPTER 5. RESERVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 5. 1. Net Premium Reserves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 5. 2. Mortality Profit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 5. 3. Modified Reserves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 ANSWERS TO ODD-NuMBERED PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




Modelling Longevity Dynamics for Pensions and Annuity Business


Book Description

Mortality improvements, uncertainty in future mortality trends and the relevant impact on life annuities and pension plans constitute important topics in the field of actuarial mathematics and life insurance techniques. In particular, actuarial calculations concerning pensions, life annuities and other living benefits (provided, for example, by long-term care insurance products and whole life sickness covers) are based on survival probabilities which necessarily extend over a long time horizon. In order to avoid underestimation of the related liabilities, the insurance company (or the pension plan) must adopt an appropriate forecast of future mortality. Great attention is currently being devoted to the management of life annuity portfolios, both from a theoretical and a practical point of view, because of the growing importance of annuity benefits paid by private pension schemes. In particular, the progressive shift from defined benefit to defined contribution pension schemes has increased the interest in life annuities with a guaranteed annual amount. This book provides a comprehensive and detailed description of methods for projecting mortality, and an extensive introduction to some important issues concerning longevity risk in the area of life annuities and pension benefits. It relies on research work carried out by the authors, as well as on a wide teaching experience and in CPD (Continuing Professional Development) initiatives. The following topics are dealt with: life annuities in the framework of post-retirement income strategies; the basic mortality model; recent mortality trends that have been experienced; general features of projection models; discussion of stochastic projection models, with numerical illustrations; measuring and managing longevity risk.




Fundamentals of Actuarial Mathematics


Book Description

This book provides a comprehensive introduction to actuarial mathematics, covering both deterministic and stochastic models of life contingencies, as well as more advanced topics such as risk theory, credibility theory and multi-state models. This new edition includes additional material on credibility theory, continuous time multi-state models, more complex types of contingent insurances, flexible contracts such as universal life, the risk measures VaR and TVaR. Key Features: Covers much of the syllabus material on the modeling examinations of the Society of Actuaries, Canadian Institute of Actuaries and the Casualty Actuarial Society. (SOA-CIA exams MLC and C, CSA exams 3L and 4.) Extensively revised and updated with new material. Orders the topics specifically to facilitate learning. Provides a streamlined approach to actuarial notation. Employs modern computational methods. Contains a variety of exercises, both computational and theoretical, together with answers, enabling use for self-study. An ideal text for students planning for a professional career as actuaries, providing a solid preparation for the modeling examinations of the major North American actuarial associations. Furthermore, this book is highly suitable reference for those wanting a sound introduction to the subject, and for those working in insurance, annuities and pensions.




Pension Fund Risk Management


Book Description

As pension fund systems decrease and dependency ratios increase, risk management is becoming more complex in public and private pension plans. Pension Fund Risk Management: Financial and Actuarial Modeling sheds new light on the current state of pension fund risk management and provides new technical tools for addressing pension risk from an integr




Financial Mathematics For Actuaries (Third Edition)


Book Description

This book provides a thorough understanding of the fundamental concepts of financial mathematics essential for the evaluation of any financial product and instrument. Mastering concepts of present and future values of streams of cash flows under different interest rate environments is core for actuaries and financial economists. This book covers the body of knowledge required by the Society of Actuaries (SOA) for its Financial Mathematics (FM) Exam.The third edition includes major changes such as an addition of an 'R Laboratory' section in each chapter, except for Chapter 9. These sections provide R codes to do various computations, which will facilitate students to apply conceptual knowledge. Additionally, key definitions have been revised and the theme structure has been altered. Students studying undergraduate courses on financial mathematics for actuaries will find this book useful. This book offers numerous examples and exercises, some of which are adapted from previous SOA FM Exams. It is also useful for students preparing for the actuarial professional exams through self-study.




Actuarial Mathematics of Social Security Pensions


Book Description

Describes the application of actuarial principles and techniques to public social insurance pension schemes. Aims to establish a link between public social security and occupational pension scheme methods. Part one discusses actuarial theory. Part two deals with two techniques: the projection technique, and the present value technique. There is also a brief description of actuarial mathematics.