Perspectives in Computation


Book Description

Perspectives in Computation covers three broad topics: the computation process & its limitations; the search for computational efficiency; & the role of quantum mechanics in computation.




Computation and Human Experience


Book Description

By paying close attention to the metaphors of artificial intelligence and their consequences for the field's patterns of success and failure, this text argues for a reorientation of the field away from thought and toward activity. It offers a critical reconstruction of AI research.







Smart Data


Book Description

Smart Data: State-of-the-Art Perspectives in Computing and Applications explores smart data computing techniques to provide intelligent decision making and prediction services support for business, science, and engineering. It also examines the latest research trends in fields related to smart data computing and applications, including new computing theories, data mining and machine learning techniques. The book features contributions from leading experts and covers cutting-edge topics such as smart data and cloud computing, AI for networking, smart data deep learning, Big Data capture and representation, AI for Big Data applications, and more. Features Presents state-of-the-art research in big data and smart computing Provides a broad coverage of topics in data science and machine learning Combines computing methods with domain knowledge and a focus on applications in science, engineering, and business Covers data security and privacy, including AI techniques Includes contributions from leading researchers




A Small Matter of Programming


Book Description

Analyzes cognitive, social and technical issues of end user programming. Drawing on empirical research on existing end user systems, this text examines the importance of task-specific programming languages, visual application frameworks and collaborative work practices for end user computing.




Heterogeneous Computing


Book Description

If you look around you will find that all computer systems, from your portable devices to the strongest supercomputers, are heterogeneous in nature. The most obvious heterogeneity is the existence of computing nodes of different capabilities (e.g. multicore, GPUs, FPGAs, ...). But there are also other heterogeneity factors that exist in computing systems, like the memory system components, interconnection, etc. The main reason for these different types of heterogeneity is to have good performance with power efficiency. Heterogeneous computing results in both challenges and opportunities. This book discusses both. It shows that we need to deal with these challenges at all levels of the computing stack: from algorithms all the way to process technology. We discuss the topic of heterogeneous computing from different angles: hardware challenges, current hardware state-of-the-art, software issues, how to make the best use of the current heterogeneous systems, and what lies ahead. The aim of this book is to introduce the big picture of heterogeneous computing. Whether you are a hardware designer or a software developer, you need to know how the pieces of the puzzle fit together. The main goal is to bring researchers and engineers to the forefront of the research frontier in the new era that started a few years ago and is expected to continue for decades. We believe that academics, researchers, practitioners, and students will benefit from this book and will be prepared to tackle the big wave of heterogeneous computing that is here to stay.




Selected Writings on Computing: A personal Perspective


Book Description

Since the summer of 1973, when I became a Burroughs Research Fellow, my life has been very different from what it had been before. The daily routine changed: instead of going to the University each day, where I used to spend most of my time in the company of others, I now went there only one day a week and was most of the time -that is, when not travelling!- alone in my study. In my solitude, mail and the written word in general became more and more important. The circumstance that my employer and I had the Atlantic Ocean between us was a further incentive to keep a fairly complete record of what I was doing. The public part of that output found its place in what became known as "the EWD series", which can be viewed as a form of scientific correspondence, possible since the advent of the copier. (That same copier makes it hard to estimate its actual distribution: I myself made about two dozen copies of my texts, but their recipients were welcome to act as further nodes of the distribution tree. ) The decision to publish a se1ection from the EWD series in book form was at first highly embarrassing, but as the months went by I got used to the idea. As soon as some guiding principles had been adopted -preferably not published elsewhere, as varied and as representative as possible, etc.




Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing


Book Description

The aim of the book is to familiarize the new generation of PhD students and postdoctoral fellows with the principles and methods of modern lattice field theory, which aims to resolve fundamental, non-perturbative questions about QCD without uncontrolled approximations.




Computing


Book Description

Exploring a vast array of topics related to computation, Computing: A Historical and Technical Perspective covers the historical and technical foundation of ancient and modern-day computing. The book starts with the earliest references to counting by humans, introduces various number systems, and discusses mathematics in early civilizations. It gui




Computing Nature


Book Description

This book is about nature considered as the totality of physical existence, the universe, and our present day attempts to understand it. If we see the universe as a network of networks of computational processes at many different levels of organization, what can we learn about physics, biology, cognition, social systems, and ecology expressed through interacting networks of elementary particles, atoms, molecules, cells, (and especially neurons when it comes to understanding of cognition and intelligence), organs, organisms and their ecologies? Regarding our computational models of natural phenomena Feynman famously wondered: “Why should it take an infinite amount of logic to figure out what one tiny piece of space/time is going to do?” Phenomena themselves occur so quickly and automatically in nature. Can we learn how to harness nature’s computational power as we harness its energy and materials? This volume includes a selection of contributions from the Symposium on Natural Computing/Unconventional Computing and Its Philosophical Significance, organized during the AISB/IACAP World Congress 2012, held in Birmingham, UK, on July 2-6, on the occasion of the centenary of Alan Turing’s birth. In this book, leading researchers investigated questions of computing nature by exploring various facets of computation as we find it in nature: relationships between different levels of computation, cognition with learning and intelligence, mathematical background, relationships to classical Turing computation and Turing’s ideas about computing nature - unorganized machines and morphogenesis. It addresses questions of information, representation and computation, interaction as communication, concurrency and agent models; in short this book presents natural computing and unconventional computing as extension of the idea of computation as symbol manipulation.