Perspectives in Dynamical Systems II: Mathematical and Numerical Approaches


Book Description

This volume is part of collection of contributions devoted to analytical and experimental techniques of dynamical systems, presented at the 15th International Conference “Dynamical Systems: Theory and Applications”, held in Łódź, Poland on December 2-5, 2019. The wide selection of material has been divided into three volumes, each focusing on a different field of applications of dynamical systems. The broadly outlined focus of both the conference and these books includes bifurcations and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, optimization problems in applied sciences, stability of dynamical systems, experimental and industrial studies, vibrations of lumped and continuous systems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.




Perspectives in Dynamical Systems I: Mechatronics and Life Sciences


Book Description

This volume is part of collection of contributions devoted to analytical and experimental techniques of dynamical systems, presented at the 15th International Conference “Dynamical Systems: Theory and Applications”, held in Łódź, Poland on December 2-5, 2019. The wide selection of material has been divided into three volumes, each focusing on a different field of applications of dynamical systems. The broadly outlined focus of both the conference and these books includes bifurcations and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, optimization problems in applied sciences, stability of dynamical systems, experimental and industrial studies, vibrations of lumped and continuous systems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.




Control Perspectives on Numerical Algorithms and Matrix Problems


Book Description

Control Perspectives on Numerical Algorithms and Matrix Problems organizes the analysis and design of iterative numerical methods from a control perspective. The authors discuss a variety of applications, including iterative methods for linear and nonlinear systems of equations, neural networks for linear and quadratic programming problems, support vector machines, integration and shooting methods for ordinary differential equations, matrix preconditioning, matrix stability, and polynomial zero finding. This book opens up a new field of interdisciplinary research that should lead to insights in the areas of both control and numerical analysis and shows that a wide range of applications can be approached from, and benefit from, a control perspective.




Perspectives in Dynamical Systems II — Numerical and Analytical Approaches


Book Description

This proceedings volume gathers selected, peer-reviewed papers presented at the Dynamical Systems Theory and Applications International Conference - DSTA 2021, held virtually on December 6-9, 2021, organized by the Department of Automation, Biomechanics, and Mechatronics at Lodz University of Technology, Poland. This volume focuses on numerical and analytical approaches, while Volume I concentrates on studies on applications. Being a truly international conference, this 16th iteration of DSTA received submissions from authors representing 52 countries. The program covered both theoretical and experimental approaches to widely understood dynamical systems, including topics devoted to bifurcations and chaos, control in dynamical systems, asymptotic methods in nonlinear dynamics, stability of dynamical systems, lumped mass and continuous systems vibrations, original numerical methods of vibration analysis, non-smooth systems, dynamics in life sciences and bioengineering, as well as engineering systems and differential equations. DSTA conferences aim to provide a common platform for exchanging new ideas and results of recent research in scientific and technological advances in modern dynamical systems. Works contained in this volume can appeal to researchers in the field, whether in mathematics or applied sciences, and practitioners in myriad industries.




Dynamical Systems in Theoretical Perspective


Book Description

This book focuses on theoretical aspects of dynamical systems in the broadest sense. It highlights novel and relevant results on mathematical and numerical problems that can be found in the fields of applied mathematics, physics, mechanics, engineering and the life sciences. The book consists of contributed research chapters addressing a diverse range of problems. The issues discussed include (among others): numerical-analytical algorithms for nonlinear optimal control problems on a large time interval; gravity waves in a reservoir with an uneven bottom; value distribution and growth of solutions for certain Painlevé equations; optimal control of hybrid systems with sliding modes; a mathematical model of the two types of atrioventricular nodal reentrant tachycardia; non-conservative instability of cantilevered nanotubes using the Cell Discretization Method; dynamic analysis of a compliant tensegrity structure for use in a gripper application; and Jeffcott rotor bifurcation behavior using various models of hydrodynamic bearings.




Averaging Methods in Nonlinear Dynamical Systems


Book Description

Perturbation theory and in particular normal form theory has shown strong growth in recent decades. This book is a drastic revision of the first edition of the averaging book. The updated chapters represent new insights in averaging, in particular its relation with dynamical systems and the theory of normal forms. Also new are survey appendices on invariant manifolds. One of the most striking features of the book is the collection of examples, which range from the very simple to some that are elaborate, realistic, and of considerable practical importance. Most of them are presented in careful detail and are illustrated with illuminating diagrams.




Piecewise-smooth Dynamical Systems


Book Description

This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.




Model Reduction of Complex Dynamical Systems


Book Description

This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems – MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.




Computational Methods in Bifurcation Theory and Dissipative Structures


Book Description

"Dissipative structures" is a concept which has recently been used in physics to discuss the formation of structures organized in space and/or time at the expense of the energy flowing into the system from the outside. The space-time structural organization of biological systems starting from the subcellular level up to the level of ecological systems, coherent structures in laser and of elastic stability in mechanics, instability in hydro plasma physics, problems dynamics leading to the development of turbulence, behavior of electrical networks and chemical reactors form just a short list of problems treated in this framework. Mathematical models constructed to describe these systems are usually nonlinear, often formed by complicated systems of algebraic, ordinary differ ential, or partial differential equations and include a number of character istic parameters. In problems of theoretical interest as well as engineering practice, we are concerned with the dependence of solutions on parameters and particularly with the values of parameters where qualitatively new types of solutions, e.g., oscillatory solutions, new stationary states, and chaotic attractors, appear (bifurcate). Numerical techniques to determine both bifurcation points and the depen dence of steady-state and oscillatory solutions on parameters are developed and discussed in detail in this text. The text is intended to serve as a working manual not only for students and research workers who are interested in dissipative structures, but also for practicing engineers who deal with the problems of constructing models and solving complicated nonlinear systems.