Petroleum Microbiology: the Role of Microorganisms in the Transition to Net Zero Energy


Book Description

"In the oil and gas industry, technologies have been developed to address microbial-related issues such as oil field souring, microbiologically influenced corrosion, biofouling, and targeted measures for risk assessment and mitigation. Microorganisms have also benefited the oil sector through microbial enhanced oil recovery and bioremediation of petroleum-contaminated environments. However, during the current transitional phase in the oil and gas industry, the role of the microbiome within the current infrastructure and its potential impact on future systems remains an open question. Petroleum Microbiology: The Role of Microorganisms in the Transition to Net Zero Energy explores technological advances in applied microbiology in the oil and gas sector that can be utilized in its transition to renewable energy systems. Features: Provides insights on the potential of applying microbiological techniques in oil systems to pave the way to achieving net-zero energy. Presents the major industrial problems caused by microbes and their beneficial activities from both fundamental and applied perspectives. Covers such technologies as next-generation sequencing, sampling, and diagnostics. Offers a solid foundation on the importance of microbes to key aspects of the energy industry. Seeks to answer the question: what role will microorganisms play in the evolution of energy systems? Featuring chapters from interdisciplinary experts spanning academia and industry, this is an excellent reference for microbial ecologists, molecular biologists, operators, engineers, chemists, and academics involved in the oil and gas sector, working toward energy transition"--







Clean Energy and Resource Recovery


Book Description

Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity.As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy. - Offers a comprehensive overview of the fundamental treatments and methods used in the recovery of energy and value-added products from wastewater - Identifies solutions to key problems related to wastewater to energy/resource recovery through conventional and advanced technologies and explore the alternatives - Provides step-by-step guidance on procedures and calculations from practical field data - Includes successful case studies from both developing and developed countries




Environmental Microbiology of Aquatic and Waste Systems


Book Description

This book places the main actors in environmental microbiology, namely the microorganisms, on center stage. Using the modern approach of 16S ribosomal RNA, the book looks at the taxonomy of marine and freshwater bacteria, fungi, protozoa, algae, viruses, and the smaller aquatic animals such as nematodes and rotifers, as well as at the study of unculturable aquatic microorganisms (metagenomics). The peculiarities of water as an environment for microbial growth, and the influence of aquatic microorganisms on global climate and global recycling of nitrogen and sulphur are also examined. The pollution of water is explored in the context of self-purification of natural waters. Modern municipal water purification and disease transmission through water are discussed. Alternative methods for solid waste disposal are related to the economic capability of a society. Viruses are given special attention. By focusing on the basics, this primer will appeal across a wide range of disciplines.




Microbial Biotechnology


Book Description

Incorporates the Experiences of World-Class Researchers Microbial Biotechnology: Progress and Trends offers a theoretical take on topics that relate to microbial biotechnology. The text uses the "novel experimental experiences" of various contributors from around the world—designed as case studies—to highlight relevant topics, issues, and recent developments surrounding this highly interdisciplinary field. It factors in metagenomics and microbial biofuels production, and incorporates major contributions from a wide range of disciplines that include microbiology, biochemistry, genetics, molecular biology, chemistry, biochemical engineering, and bioprocess engineering. In addition, it also provides a variety of photos, diagrams, and tables to help illustrate the material. The book consists of 15 chapters and contains subject matter that addresses: Microbial biotechnology from its historical roots to its different processes Some of the new developments in upstream processes Solid-state fermentation as an interesting field in modern fermentation processes Recent developments in the production of valuable microbial products such as biofuels, organic acids, amino acids, probiotics, healthcare products, and edible biomass Important microbial activities such as biofertilizer, biocontrol, biodegradation, and bioremediation Students, scientists, and researchers can benefit from Microbial Biotechnology: Progress and Trends, a resource that addresses biotechnology, applied microbiology, bioprocess/fermentation technology, healthcare/pharmaceutical products, food innovations/food processing, plant agriculture/crop improvement, energy and environment management, and all disciplines related to microbial biotechnology.







Biofuels for a More Sustainable Future


Book Description

Biofuels for a More Sustainable Future: Life Cycle Sustainability Assessment and Multi-criteria Decision Making provides a comprehensive sustainability analysis of biofuels based on life cycle thinking and develops various multi-dimensional decision-making techniques for prioritizing biofuel production technologies. Taking a transversal approach, the book combines life cycle sustainability assessment, life cycle assessment, life cycle costing analysis, social life cycle assessment, sustainability metrics, triple bottom line, operations research methods, and supply chain design for investigating the critical factors and key enablers that influence the sustainable development of biofuel industry. This book will equip researchers and policymakers in the energy sector with the scientific methodology and metrics needed to develop strategies for viable sustainability transition. It will be a key resource for students, researchers and practitioners seeking to deepen their knowledge on energy planning and current and future trends of biofuel as an alternative fuel. - Provides an innovative approach to promoting sustainable development in biofuel production by linking supply chain design and decision support with the life cycle perspective - Features case studies and examples that illustrate the theory and methods developed - Includes material on corporate social responsibility and economic analysis of biofuels that is highly useful to policy-makers and administrators in both government and enterprise sectors




Microorganisms in Environmental Management


Book Description

Microbes and their biosynthetic capabilities have been invaluable in finding solutions for several intractable problems mankind has encountered in maintaining the quality of the environment. They have, for example, been used to positive effect in human and animal health, genetic engineering, environmental protection, and municipal and industrial waste treatment. Microorganisms have enabled feasible and cost-effective responses which would have been impossible via straightforward chemical or physical engineering methods. Microbial technologies have of late been applied to a range of environmental problems, with considerable success. This survey of recent scientific progress in usefully applying microbes to both environmental management and biotechnology is informed by acknowledgement of the polluting effects on the world around us of soil erosion, the unwanted migration of sediments, chemical fertilizers and pesticides, and the improper treatment of human and animal wastes. These harmful phenomena have resulted in serious environmental and social problems around the world, problems which require us to look for solutions elsewhere than in established physical and chemical technologies. Often the answer lies in hybrid applications in which microbial methods are combined with physical and chemical ones. When we remember that these highly effective microorganisms, cultured for a variety of applications, are but a tiny fraction of those to be found in the world around us, we realize the vastness of the untapped and beneficial potential of microorganisms. At present, comprehending the diversity of hitherto uncultured microbes involves the application of metagenomics, with several novel microbial species having been discovered using culture-independent approaches. Edited by recognized leaders in the field, this penetrating assessment of our progress to date in deploying microorganisms to the advantage of environmental management and biotechnology will be widely welcomed.




Management of Legionella in Water Systems


Book Description

Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.




Microbial Respiration


Book Description