Phase Estimation in Optical Interferometry


Book Description

This book covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding modern phase estimation methods. The book first focuses on phase retrieval from image transforms using a single frame. It then examines the local environment of a fringe pattern, the phase estimation approach based on local polynomial phase modeling, temporal high-resolution phase evaluation methods, and methods of phase unwrapping. It also discusses experimental imperfections liable to adversely influence the accuracy of phase measurements.




Handbook of Holographic Interferometry


Book Description

The book presents the principles and methods of holographic interferometry - a coherent-optical measurement technique for deformation and stress analysis, for the determination of refractive-index distributions, or applied to non-destructive testing. Emphasis of the book is on the quantitative computer-aided evaluation of the holographic interferograms. Based upon wave-optics the evaluation methods, their implementation in computer-algorithms, and their applications in engineering are described.




Holographic Interferometry


Book Description

Holographic Interferometry provides a valuable and up-to-date source of information in the rapidly expanding field. The eight specialists` contributions cover the principles and methods currently in use. The scope of the book has been limited to the study of opaque object and ample space has been devoted to a comprehensive treatment of the phenomena of fringe formation, with a particular emphasis on the quantitative evaluation of the holographic interference fringe patterns. The emergence of computer-aided fringe analysis and phase-shifting techniques have simplified considerably the quantative real-time measurements of object shapes and deformations. The last two chapters provide a reasonably detailedoverview of full-field holographic methods for the measurement of shapes, displacements, dervatives, difference displacements and vibrations.




Digital Optical Measurement Techniques and Applications


Book Description

This new resource explains the principles and applications of today’s digital optical measurement techniques. From start to finish, each chapter provides a concise introduction to the concepts and principles of digital optical metrology, followed by a detailed presentation of their applications. The development of all these topics, including their numerous methods, principles, and applications, has been illustrated using a large number of easy-to-understand figures. This book aims to not only help the reader identify the appropriate techniques in function of the measurement requirements, but also assess modern digital measurement systems.




Springer Handbook of Experimental Solid Mechanics


Book Description

The Springer Handbook of Experimental Solid Mechanics documents both the traditional techniques as well as the new methods for experimental studies of materials, components, and structures. The emergence of new materials and new disciplines, together with the escalating use of on- and off-line computers for rapid data processing and the combined use of experimental and numerical techniques have greatly expanded the capabilities of experimental mechanics. New exciting topics are included on biological materials, MEMS and NEMS, nanoindentation, digital photomechanics, photoacoustic characterization, and atomic force microscopy in experimental solid mechanics. Presenting complete instructions to various areas of experimental solid mechanics, guidance to detailed expositions in important references, and a description of state-of-the-art applications in important technical areas, this thoroughly revised and updated edition is an excellent reference to a widespread academic, industrial, and professional engineering audience.




Optical Methods of Measurement


Book Description

Optical Methods of Measurement: Wholefield Techniques, Second Edition provides a comprehensive collection of wholefield optical measurement techniques for engineering applications. Along with the reorganization of contents, this edition includes a new chapter on optical interference, new material on nondiffracting and singular beams and their applications, and updated bibliography and additional reading sections. The book explores the propagation of laser beams, metrological applications of phase-singular beams, various detectors such as CCD and CMOS devices, and recording materials. It also covers interference, diffraction, and digital fringe pattern measurement techniques, with special emphasis on phase measurement interferometry and algorithms. The remainder of the book focuses on theory, experimental arrangements, and applications of wholefield techniques. The author discusses digital hologram interferometry, digital speckle photography, digital speckle pattern interferometry, Talbot interferometry, and holophotoelasticity. This updated book compiles the major wholefield methods of measurement in one volume. It provides a solid understanding of the techniques by describing the physics behind them. In addition, the examples given illustrate how the techniques solve measurement problems.




Holography and Deformation Analysis


Book Description

In this book series on Optical Sciences, holography has been the subject of three previous volumes. In particular, Vol. 16, written by one of us (W. S. ) and Dr. M. Dubas, treated holographic interferometry of opaque bodies from the standpoint of deformation analysis. However, the fundamental principles of holography are developed there only briefly in preparation for a discussion of interference fringe modifications. This new volume in the series is intended to consider in detail many topics which were previously omitted, such as the deformation or distortion of holo graphic images, the theory of volume holograms, composite or multiplex holo graphy, holographic interferometry of transparent media, time dependent effects, holographic contouring, and applications of fringe modifications to the deformation of opaque bodies. In addition, these and other subjects will be treated with the same unifying concept developed in Vol. 16, but with an addi tional emphasis on those features that have their origins in classical optics, espe cially the small-wavelength approach, the coupled-wave theory, and the Seidel aberrations. Since the field of holography and its various applications is growing rapidly, it is impossible to be comprehensive in a single book. Every effort has beep. made to avoid unnecessary duplication of Vol. 16. For example, displace ment and fringe localization problems are only briefly discussed, while some modification techniques (e. g. , sandwich holography) are not included. When needed, however, the reader is directly referred to complementary publications.




Sensors, Optical Sensors


Book Description

'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume provides a unique overview of optical sensors. Fundamentals, technical aspects, applications and various measuring techniques in the wide field of optics are described. It also covers light propagation, its measurement, the principles of photoelectric conversion as well as a survey of light sources, detectors and different kinds of optical parts. Five chapters describe detection schemes depending on wavelength, phase, and pulsetime. It also presents topics such as: Instruments approved in industry and novel concepts of optical sensors; Fiber and integrated optics as more recent techniques; Different techniques of optical sensing such as machine vision and signal processing, and for the determination surface morphology and deformation are covered. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.




Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015


Book Description

This book contains papers of the 5th International Symposium on Experimental Mechanics (5-ISEM) and the 9th Symposium on Optics in Industry (9-SOI), whose general theme is Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications. These symposia are organized by Centro de Investigaciones en Optica (CIO) and Mexican Academy for Optics (AMO), under the sponsorship of the Society of Experimental Mechanics (SEM) and other national and international Organizations; Symposia are interdisciplinary forums for engineers, technicians, researchers and managers involved in all fields of Optics, Opto-mechatronics, Mechanics and Mechanical Engineering. · Addresses a broad readership including graduate and postgraduate students, researchers, and engineers working in experimental mechanics and in the application of optical methods · Covers a broad spectrum of topics highlighting the use of optical methods in experimental mechanics, energy, and in the environment




Proceedings of 2nd International Conference on Computer Vision & Image Processing


Book Description

The book provides insights into the Second International Conference on Computer Vision & Image Processing (CVIP-2017) organized by Department of Computer Science and Engineering of Indian Institute of Technology Roorkee. The book presents technological progress and research outcomes in the area of image processing and computer vision. The topics covered in this book are image/video processing and analysis; image/video formation and display; image/video filtering, restoration, enhancement and super-resolution; image/video coding and transmission; image/video storage, retrieval and authentication; image/video quality; transform-based and multi-resolution image/video analysis; biological and perceptual models for image/video processing; machine learning in image/video analysis; probability and uncertainty handling for image/video processing; motion and tracking; segmentation and recognition; shape, structure and stereo.