Fact Sheet


Book Description







Water Policy in Minnesota


Book Description

Minnesota has a unique role in U.S. water policy. Hydrologically, it is a state with more than 12,000 lakes, an inland sea, and the headwaters of three major river systems: the St Lawrence, the Red River of the North, and the Mississippi. Institutionally, Minnesota is also unique. All U.S. states use Total Maximum Daily Load (TMDL) approaches to addressing impaired waters. Every TMDL requires a substantial investment of resources, including data collection, modeling, stakeholder input and analysis, a watershed management plan, as well as process and impact monitoring. Minnesota is the only state in the union that has passed legislation (the 2007 Clean Water Legacy Act) providing significant resources to support the TMDL process. The book will be an excellent guide for policymakers and decision makers who are interested in learning about alternative approaches to water management. Non-governmental organizations interested in stimulating effective water quality policy will also find this a helpful resource. Finally, there are similarities between the lessons learned in Minnesota and the goals of water policy in several other states and nations, where there are competing uses of water for households, agriculture, recreation, and navigation.







Water Chemistry


Book Description

Water Chemistry provides students with the tools needed to understand the processes that control the chemical species present in waters of both natural and engineered systems. After providing basic information about water and its chemical composition in environmental systems, the text covers theoretical concepts key to solving water chemistry problems. Water Chemistry emphasizes that both equilibrium and kinetic processes are important in aquatic systems. The content focuses not only on inorganic constituents but also on natural and anthropogenic organic chemicals in water. This new edition of Water Chemistry also features updated discussions of photochemistry, chlorine and disinfectants, geochemical controls on chemical composition, trace metals, nutrients, and oxygen. Quantitative equilibrium and kinetic problems related to acid-base chemistry, complexation, solubility, oxidation/reduction reactions, sorption, and the fate and reactions of organic chemicals are solved using mathematical, graphical, and computational tools. Examples show the application of theory and demonstrate how to solve problems using algebraic, graphical, and up-to-date computer-based techniques. Additional web material provides advanced content.







Water Quality Modeling for Wasteload Allocations and TMDLs


Book Description

Complete, practical coverage of pollution control regulations and water quality modeling Water Quality Modeling for Wasteload Allocations and TMDLs provides practical guidance for engineers charged with determining the volume and character of wastewater that a body of water can receive without suffering environmental damage. Following the discussion on water pollution control regulations and their relationships to water quality modeling and wasteload allocation for determining the total maximum daily load (TMDL), the first half of the book focuses on quantifying the model coefficients to characterize physical, chemical, and biological processes of a variety of water quality problems. The remainder of the book guides engineers in the application of EPA-developed models for regulatory use. Presenting numerous case studies and a substantial amount of data, this comprehensive guide: * Covers practical applications of wasteload allocation * Provides guidance to develop technical information for obtaining National Pollution Discharge Elimination System (NPDES) permits * Demonstrates the application of STREAM, QUAL2E, WASP, and HAR03 Water Quality Modeling for Wasteload Allocations and TMDLs is an essential resource for state and federal water quality agencies, consulting engineering firms, publicly owned treatment works, environmental biologists and chemists, and public health officials involved with pollution control.







Multi-Scale Biogeochemical Processes in Soil Ecosystems


Book Description

MULTI-SCALE BIOGEOCHEMICAL PROCESSES IN SOIL ECOSYSTEMS Provides a state-of-the-art overview of research in soil biogeochemical processes and strategies for greenhouse gas mitigation under climate change Food security and soil health for the rapidly growing human population are threatened by increased temperature and drought, soil erosion and soil quality degradation, and other problems caused by human activities and a changing climate. Because greenhouse gas emission is the primary driver of climate change, a complete understanding of the cycles of carbon and major nutritional elements is critical for developing innovative strategies to sustain agricultural development and environmental conservation. Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes is an up-to-date overview of recent research in soil biogeochemical processes and applications in ecosystem management. Organized into three parts, the text examines molecular-scale processes and critical reactions, presents ecosystem-scale studies of ecological hotspots, and discusses large-scale modeling and prediction of global biogeochemical cycles. Part of the Wiley - IUPAC Series on Biophysico-Chemical Processes in Environmental Systems, this authoritative volume: Provides readers with a systematic and interdisciplinary approach to sustainable agricultural development and management of soil ecosystems in a changing climate Features contributions from an international team of leading scientists Examines topics such as soil organic matter stabilization, soil biogeochemistry modeling, and soil responses to environmental changes Discusses strategies for mitigating greenhouse gas emission and improving soil health and ecosystems resilience Includes an introduction to working across scales to project soil biogeochemical responses to climatic change Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes is essential reading for scientists, engineers, agronomists, chemists, biologists, academic researchers, consultants, and other professionals whose work involves the nutrient cycle, ecosystem management, and climate change.