Photoionization and Photodetachment


Book Description

Owing to the advances of vacuum ultraviolet and ultrafast lasers and third generation synchrotron sources, the research on photoionization, photoelectrons, and photodetachment has gained much vitality in recent years. These new light sources, together with ingenious experimental techniques, such as the coincidence imaging, molecular beam, pulsed field ionization photoelectron, mass-analyzed threshold ion, and pulsed field ion pair schemes, have allowed spectroscopic, dynamic, and energetic studies of gaseous species to a new level of detail and accuracy. Profitable applications of these methods to liquids are emerging.This invaluable two-volume review consists of twenty-two chapters, focusing on recent developments in photoionization and photodetachment studies of atoms; molecules, transient species, clusters, and liquids.







Photodissociation Dynamics


Book Description

Photodissociation induced by the absorption of single photons permits the detailed study of molecular dynamics such as the breaking of bonds, internal energy transfer and radiationless transitions. The availability of powerful lasers operating over a wide frequency range has stimulated rapid development of new experimental techniques which make it possible to analyse photodissociation processes in unprecedented detail. This text elucidates the achievements in calculating photodissociation cross-sections and fragment state distributions from first principles, starting from multi-dimensional potential energy surfaces and the Schrödinger equation of nuclear motion. Following an extended introduction in which the various types of observables are outlined, the book summarises the basic theoretical tools, namely the time-independent and the time-dependent quantum mechanical approaches as well as the classical picture of photodissociation. The discussions of absorption spectra, diffuse vibrational structures, the vibrational and rotational state distributions of the photofragments form the core of the book. More specific topics such as the dissociation of vibrationally excited molecules, emission during dissociation, or nonadiabatic effects are also discussed. It will be of interest to graduate students and senior scientists working in molecular physics, spectroscopy, molecular collisions and molecular kinetics.







Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-map Imaging Photoion and Photoelectron Method


Book Description

The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C16O that produce C(3P) + O(3P), C(1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm−1 to 110,500 cm−1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies.




Molecular Photodissociation Dynamics


Book Description

Molecular Photodissociation Dynamics was the first title to be published in this series and provides overviews of selected aspects of the subject. The experimental study of photodissociation has been revolutionized by the ready availability of intense, tunable laser sources, operational over a substantial portion of the electromagnetic spectrum, and with parallel developments in theoretical chemistry has opened the way to detailed theoretical study of the fragmentation dynamics of the excited state. This book will therefore be essential reading for those working in this area.




Photodissociation Spectroscopy and Dynamics of Free Radicals, Clusters, and Ions


Book Description

The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C2H5O, and linear C{sub n} (n = 4--6).