Fundamentals of Photoinduced Electron Transfer
Author : George J. Kavarnos
Publisher : Wiley-VCH
Page : 376 pages
File Size : 34,67 MB
Release : 1993
Category : Science
ISBN :
Author : George J. Kavarnos
Publisher : Wiley-VCH
Page : 376 pages
File Size : 34,67 MB
Release : 1993
Category : Science
ISBN :
Author :
Publisher :
Page : 256 pages
File Size : 24,44 MB
Release : 1991
Category : Charge exchange
ISBN : 9781559383202
Author : David F. Eaton
Publisher : Springer
Page : 256 pages
File Size : 48,49 MB
Release : 1990-09-17
Category : Science
ISBN :
Author : Charles Gilbert Overberger
Publisher :
Page : 180 pages
File Size : 48,90 MB
Release : 2002
Category : Science
ISBN :
This book is an up-to-date collection of presentations and posters given at a tutorial and workshop sponsored by the Polymer Division of the American Chemical Society. The material included encompasses recent research results, overviews of critical areas and short presentations in the form of posters and preprints. The book is targeted at established workers in the field of fluoropolymers as well as those wishing to develop a quick understanding of current knowledge and trends in this important field.
Author : Shunichi Fukuzumi
Publisher : John Wiley & Sons
Page : 372 pages
File Size : 48,82 MB
Release : 2020-01-29
Category : Science
ISBN : 3527651799
Written by one of the top scientists in this field, this is a systematic overview of the fundamental concepts and powerful applications. The author presents the central theories and mechanisms in electron transfer, followed by several systems in nature where this is important, while also covering modern green applications. An invaluable resource for graduate students and researchers working in this field in academia and industry.
Author : Ana de Bettencourt-Dias
Publisher : John Wiley & Sons
Page : 408 pages
File Size : 36,87 MB
Release : 2014-09-08
Category : Science
ISBN : 1118682815
This comprehensive book presents the theoretical principles, current applications and latest research developments in the field of luminescent lanthanide complexes; a rapidly developing area of research which is attracting increasing interest amongst the scientific community. Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials begins with an introduction to the basic theoretical and practical aspects of lanthanide ion luminescence, and the spectroscopic techniques used to evaluate the efficiency of luminescence. Subsequent chapters introduce a variety of different applications including: • Circularly polarized luminescence • Luminescence bioimaging with lanthanide complexes • Two-photon absorption of lanthanide complexes • Chemosensors • Upconversion luminescence • Excitation spectroscopy • Heterometallic complexes containing lanthanides Each chapter presents a detailed introduction to the application, followed by a description of experimental techniques specific to the area and an extensive review of recent literature. This book is a valuable introduction to the literature for scientists new to the field, as well as providing the more experienced researcher with a comprehensive resource covering the most relevant information in the field; a ‘one stop shop’ for all key references.
Author : Abderrazzak Douhal
Publisher : World Scientific
Page : 854 pages
File Size : 45,95 MB
Release : 2002
Category : Science
ISBN : 9810248660
This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological molecules, surfaces and nanostructures. At the same time it stresses the different ways to control the rates and pathways of reactive events in chemistry and biology. Particular emphasis is given to biological processes as an area where femtodynamics is becoming very useful for resolving the structural dynamics from techniques such as electron diffraction, and X-ray and IR spectroscopy. Finally, the latest developments in quantum control (in both theory and experiment) and the experimental pulse-shaping techniques are described.
Author : Waldermar Adam
Publisher : Elsevier
Page : 401 pages
File Size : 43,59 MB
Release : 2012-12-02
Category : Science
ISBN : 0323152309
Chemical and Biological Generation of Excited States discusses major aspects of chemical and biological generation of electronic excitation. This book is organized into 11 chapters that focus on both chemi- and bioenergized processes. This book first discusses some of the fundamental aspects of the description of excited state behavior in condensed media. It then examines the field of gas-phase dioxetane chemiluminescence both by itself and in relation to solution-phase studies. The presented analysis is based on statistical mechanics and supported by a very simple limiting case calculation. Chapter 4 describes the state-of-the-art of how excitation yields are determined experimentally in chemienergized processes. This is followed by a discussion on activation parameters and stability trends, focusing on solution-phase data. Chapters 6 and 7 examine solution-phase chemiluminescence resulting from high-energy electron-transfer reaction, often involving aromatic radical ions, and the mechanism of excitation step. The next chapters cover the generation of electronic excited states in bioluminescence and the evaluation of luminescent oxidation mechanisms using oxygen tracers. The chapters also explain the formation of electronically excited products in dark biological processes and the mechanism of chemiexcitation as it relates to redox metabolism. Specific examples of biological oxygenation reactions yielding luminescence are also presented. Furthermore, this book discusses the concept and applicability of chemiluminigenic probing for the quantification and differentiation of oxygenation activities in mammalian phagocytes. The concluding chapter is devoted to the possible formation of singlet oxygen in various systems and processes that mimic singlet oxygen reactions. The book intends to attract young scientists as well as established research workers to broaden the horizons of this rapidly growing and potentially very important field.
Author : Ramprasad Misra
Publisher : John Wiley & Sons
Page : 257 pages
File Size : 43,72 MB
Release : 2018-02-27
Category : Science
ISBN : 3527801944
Bridging the gap between the multitude of advanced research articles and the knowledge newcomers to the field are looking for, this is a timely and comprehensive monograph covering the interdisciplinary topic of intramolecular charge transfer (ICT). The book not only covers the fundamentals and physico-chemical background of the ICT process, but also places a special emphasis on the latest experimental and theoretical studies that have been undertaken to understand this process and discusses key technological applications. After outlining the discovery of ICT molecules, the authors go on to discuss several important substance classes. They present the latest techniques for studying the underlying processes and show the interplay between charge transfer and the surrounding medium. Examples taken from nonlinear optics, viscosity and polarity sensors, and organic electronics testify to the vast range of applications. The result is a unique information source for experimentalists as well as theoreticians, from postgraduate students to researchers.
Author : Roberta Croce
Publisher : CRC Press
Page : 778 pages
File Size : 30,88 MB
Release : 2018-01-12
Category : Science
ISBN : 1351242873
This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field’s world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam.