Photomask Fabrication Technology


Book Description

Photomasks, the printing masters for the fabrication of integrated circuits, have become a necessity of modern semiconductor manufacturing. This book details the science and technology of industrial photo mask production, including fundamental principles, industrial production flows, and technological evolution.




Handbook of Photomask Manufacturing Technology


Book Description

As the semiconductor industry attempts to increase the number of functions that will fit into the smallest space on a chip, it becomes increasingly important for new technologies to keep apace with these demands. Photomask technology is one of the key areas to achieving this goal. Although brief overviews of photomask technology exist in the literature, the Handbook of Photomask Manufacturing Technology is the first in-depth, comprehensive treatment of existing and emerging photomask technologies available. The Handbook of Photomask Manufacturing Technology features contributions from 40 internationally prominent authors from industry, academia, government, national labs, and consortia. These authors discuss conventional masks and their supporting technologies, as well as next-generation, non-optical technologies such as extreme ultraviolet, electron projection, ion projection, and x-ray lithography. The book begins with an overview of the history of photomask development. It then demonstrates the steps involved in designing, producing, testing, inspecting, and repairing photomasks, following the sequences observed in actual production. The text also includes sections on materials used as well as modeling and simulation. Continued refinements in the photomask-making process have ushered in the sub-wavelength era in nanolithography. This invaluable handbook synthesizes these refinements and provides the tools and possibilities necessary to reach the next generation of microfabrication technologies.




Handbook of Semiconductor Manufacturing Technology


Book Description

Retaining the comprehensive and in-depth approach that cemented the bestselling first edition's place as a standard reference in the field, the Handbook of Semiconductor Manufacturing Technology, Second Edition features new and updated material that keeps it at the vanguard of today's most dynamic and rapidly growing field. Iconic experts Robert Doering and Yoshio Nishi have again assembled a team of the world's leading specialists in every area of semiconductor manufacturing to provide the most reliable, authoritative, and industry-leading information available. Stay Current with the Latest Technologies In addition to updates to nearly every existing chapter, this edition features five entirely new contributions on... Silicon-on-insulator (SOI) materials and devices Supercritical CO2 in semiconductor cleaning Low-κ dielectrics Atomic-layer deposition Damascene copper electroplating Effects of terrestrial radiation on integrated circuits (ICs) Reflecting rapid progress in many areas, several chapters were heavily revised and updated, and in some cases, rewritten to reflect rapid advances in such areas as interconnect technologies, gate dielectrics, photomask fabrication, IC packaging, and 300 mm wafer fabrication. While no book can be up-to-the-minute with the advances in the semiconductor field, the Handbook of Semiconductor Manufacturing Technology keeps the most important data, methods, tools, and techniques close at hand.




Introduction to Microfabrication


Book Description

This accessible text is now fully revised and updated, providing an overview of fabrication technologies and materials needed to realize modern microdevices. It demonstrates how common microfabrication principles can be applied in different applications, to create devices ranging from nanometer probe tips to meter scale solar cells, and a host of microelectronic, mechanical, optical and fluidic devices in between. Latest developments in wafer engineering, patterning, thin films, surface preparation and bonding are covered. This second edition includes: expanded sections on MEMS and microfluidics related fabrication issues new chapters on polymer and glass microprocessing, as well as serial processing techniques 200 completely new and 200 modified figures more coverage of imprinting techniques, process integration and economics of microfabrication 300 homework exercises including conceptual thinking assignments, order of magnitude estimates, standard calculations, and device design and process analysis problems solutions to homework problems on the complementary website, as well as PDF slides of the figures and tables within the book With clear sections separating basic principles from more advanced material, this is a valuable textbook for senior undergraduate and beginning graduate students wanting to understand the fundamentals of microfabrication. The book also serves as a handy desk reference for practicing electrical engineers, materials scientists, chemists and physicists alike. www.wiley.com/go/Franssila_Micro2e




Thin Film Transistor Technologies VI


Book Description




Principles of Lithography


Book Description

Lithography is a field in which advances proceed at a swift pace. This book was written to address several needs, and the revisions for the second edition were made with those original objectives in mind. Many new topics have been included in this text commensurate with the progress that has taken place during the past few years, and several subjects are discussed in more detail. This book is intended to serve as an introduction to the science of microlithography for people who are unfamiliar with the subject. Topics directly related to the tools used to manufacture integrated circuits are addressed in depth, including such topics as overlay, the stages of exposure, tools, and light sources. This text also contains numerous references for students who want to investigate particular topics in more detail, and they provide the experienced lithographer with lists of references by topic as well. It is expected that the reader of this book will have a foundation in basic physics and chemistry. No topics will require knowledge of mathematics beyond elementary calculus.




EDA for IC Implementation, Circuit Design, and Process Technology


Book Description

Presenting a comprehensive overview of the design automation algorithms, tools, and methodologies used to design integrated circuits, the Electronic Design Automation for Integrated Circuits Handbook is available in two volumes. The second volume, EDA for IC Implementation, Circuit Design, and Process Technology, thoroughly examines real-time logic to GDSII (a file format used to transfer data of semiconductor physical layout), analog/mixed signal design, physical verification, and technology CAD (TCAD). Chapters contributed by leading experts authoritatively discuss design for manufacturability at the nanoscale, power supply network design and analysis, design modeling, and much more. Save on the complete set.




Handbook of Microlithography, Micromachining, and Microfabrication: Micromachining and microfabrication


Book Description

Focusing on the use of microlithography techniques in microelectronics manufacturing, this volume is one of a series addressing a rapidly growing field affecting the integrated circuit industry. New applications in such areas as sensors, actuators and biomedical devices, are described.







Nanoimprint Technology


Book Description

Nanoscale pattern transfer technology using molds is a rapidly advancing area and one that has seen much recent attention due to its potential for use in nanotechnology industries and applications. However, because of these rapid advances, it can be difficult to keep up with the technological trends and the latest cutting-edge methods. In order to fully understand these pioneering technologies, a comprehensive understanding of the basic science and an overview of the techniques are required. Nanoimprint Technology: Nanotransfer for Thermoplastic and Photocurable Polymers covers the latest nanotransfer science based on polymer behaviour. Polymer fluid dynamics are described in detail, and injection moulding, nanoimprint lithography and micro contact printing are also discussed. Cutting-edge nanotransfer technologies and applications are also considered and future trends in industry are examined. Key features: • Covers the fundamentals of nanoimprint technology • Presents cutting-edge techniques and applications • Provides industrial examples and describes the mold fabrication process • Considers nanotransfer of thermoplastics by simulation • Describes the design and evaluation of UV curable polymer Nanoimprint Technology: Nanotransfer for Thermoplastic and Photocurable Polymers is a comprehensive reference for industry engineers as well as graduate and undergraduate students, and is a useful source of information for anyone looking to improve their understanding of nanotransfer mechanisms and methods.