Photon Correlation Techniques in Fluid Mechanics


Book Description

Photon correlation is a kind of spectroscopy designed to identify optical frequency shifts and line-broadening effects in the range of many MHz down to a few Hz. The optical intensity is measured in terms of single photon detection events which result in current pulses at the output of photomulti plier tubes. This signal is processed in real time in a special-purpose paral lel processor known as a correlator. The resulting photon correlation func tion, a function in the time domain, contains the desired spectral informa tion, which may be extracted by a suitable algorithm. Due to the non-intrusive nature and the sound theoretical basis of photon correlation, the phenomena under study are not disturbed, and the parameters in question can be precisely evaluated. For these reasons photon correlation has become a valuable and in many instances indispensable technique in two distinct fields. One of these is velocimetry in fluid flow. This includes hydro- and aerodynamic processes in liquids, gases, or flames where the velo city field may be stationary, time periodic, or turbulent, and may range from micrometers per second for motion inside biological cells to one kilometer per second for supersonic flow. The other major field is stochastic particle propagation due to Brownian motion.










Molecular Liquids


Book Description

This ASI was planned to make a major contribution to the teaching of the principles and methods used in liquid phase ~esearch and to encourage the setting up of collaborative projects, as advocated by the European Molecular Liquids Group (secretary: Dr J. Yarwood, University of Durham, U. K. ). During the past five years considerable progress has been made in studying molecular liquids. The undoubted advantages of international collaboration led to the formation of the European Molecular Liquids Group (EMLG) in July 1981. The activities of the EMLG were widely disseminated in a special session of the European Congress on Molecular Spectroscopy (EUCMOS) held in September 1981 (for details, see J. Mol. Structure, 80 (1982) 375 - 421). Following the success of this meeting, it was thought that the aims and objectives of the E~G would be best served by the organisation of a broader-based gathering designed to attract those interested in the study of the structure, dynamics and interactions in the liquid state. Thanks to the generous support by the Scientific Affairs Division of NATO, it was possible to hold a NATO ASI on Molecular Liquids at the Italian Centre of Stanford University, Florence, Italy during June-July 1983. This book is based on the lectures presented at that meeting. The contents of this volume cover the three broad areas of current liquid phase research: (a) Analytical theory.







Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems


Book Description

This Advanced Study Institute was held at \-lellesley College, Wellesley, MA. , from 3 to 12 August 1980. It followed by four years the second "Capri ~,chool on Photon Correlation Spectroscopy". During the intervening period there had been many new applications of dynamic light scattering techniques to the study of systems whose properties depend either on collective molecular interactions or on the formation or activity of supramo1ecu1ar structures. Con sequently, emphasis at this conference was on light scattering studies of subjects such as dynamical correlations in dense polymer solutions, phase transitions in gels, spinodal decomposition of binary fluids, Benard instabilities in nonequilibrium fluids, the formation of micelles and phospholipid vesicles, and movements of the molecular assemblies of muscle tissue. The instructional pro gramme also included tutorial lectures on two complementary spec troscopic techniques which have benefited from dramatic advances in instrumentation, these being small angle X-ray (SAXS) and small angle neutron (SANS) scattering. Strong cold neutron and synchro tron X-ray sources have become available, and data now can be acquired rapidly with newly developed position-sensitive detectors. Several reviews of recent applications of SAXS and SANS were also provided. The organizers of the ASI hoped to provide a forum for theoreticians and experimentalists to assess advances in fields which, although related, were sufficiently different that a great deal of unfamiliar information could be communicated. The order ing of the papers in this volume closely approximates that of the talks presented at the Advanced Study Institute.




Laser Techniques for Fluid Mechanics


Book Description

This volume includes revised and extended versions of selected papers presented at the Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics held at the Calouste Gulbenkian Foundation in Lisbon, during the period of July 10 to 13, 2000. The papers describe instrumentation developments for Velocity, Scalar and Multi-Phase Flows and results of measurements of Turbulent Flows, and Combustion and Engines. The papers demonstrate the continuing and healthy interest in the development of understanding of new methodologies and implementation in terms of new instrumentation. The prime objective of the Tenth Symposium was to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and communicate significant results to fluid mechanics. The application of laser techniques to scientific and engineering fluid flow research was emphasized, but contributions to the theory and practice of laser methods were also considered where they facilitate new improved fluid mechanic research. Attention was placed on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalars, such as particle image velocimetry and laser induced fluorescence.




Encyclopedia of Optical and Photonic Engineering (Print) - Five Volume Set


Book Description

The first edition of the Encyclopedia of Optical and Photonic Engineering provided a valuable reference concerning devices or systems that generate, transmit, measure, or detect light, and to a lesser degree, the basic interaction of light and matter. This Second Edition not only reflects the changes in optical and photonic engineering that have occurred since the first edition was published, but also: Boasts a wealth of new material, expanding the encyclopedia’s length by 25 percent Contains extensive updates, with significant revisions made throughout the text Features contributions from engineers and scientists leading the fields of optics and photonics today With the addition of a second editor, the Encyclopedia of Optical and Photonic Engineering, Second Edition offers a balanced and up-to-date look at the fundamentals of a diverse portfolio of technologies and discoveries in areas ranging from x-ray optics to photon entanglement and beyond. This edition’s release corresponds nicely with the United Nations General Assembly’s declaration of 2015 as the International Year of Light, working in tandem to raise awareness about light’s important role in the modern world. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]




Particle Characterization: Light Scattering Methods


Book Description

Particle characterization is an important component in product research and development, manufacture, and quality control of particulate materials and an important tool in the frontier of sciences, such as in biotechnology and nanotechnology. This book systematically describes one major branch of modern particle characterization technology - the light scattering methods. This is the first monograph in particle science and technology covering the principles, instrumentation, data interpretation, applications, and latest experimental development in laser diffraction, optical particle counting, photon correlation spectroscopy, and electrophoretic light scattering. In addition, a summary of all major particle sizing and other characterization methods, basic statistics and sample preparation techniques used in particle characterization, as well as almost 500 latest references are provided. The book is a must for industrial users of light scattering techniques characterizing a variety of particulate systems and for undergraduate or graduate students who want to learn how to use light scattering to study particular materials, in chemical engineering, material sciences, physical chemistry and other related fields.




Handbook of Optoelectronics


Book Description

Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. (The previous edition of this title was published as Handbook of Optoelectronics, 9780750306461.) John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine.