Photonic and Phononic Properties of Engineered Nanostructures V


Book Description

This series showcases the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. It provides prompt access to the latest innovations in research and technology and ranks among the most cited references in patent literature.




Modern Applications in Optics and Photonics


Book Description

Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future.




Design Optimisation and Validation of Phononic Crystal Plates for Manipulation of Elastodynamic Guided Waves


Book Description

This thesis proposes novel designs of phononic crystal plates (PhPs) allowing ultra-wide controllability frequency ranges of guided waves at low frequencies, with promising structural and tunability characteristics. It reports on topology optimization of bi-material-layered (1D) PhPs allowing maximized relative bandgap width (RBW) at target filling fractions and demonstrates multiscale functionality of gradient PhPs. It also introduces a multi-objective topology optimization method for 2D porous PhPs allowing both maximized RBW and in-plane stiffness and addresses the critical role of considering stiffness in designing porous PhPs. The multi-objective topology optimization method is then expanded for designing 2D porous PhPs with deformation induced tunability. A variety of innovative designs are introduced which their maximized broadband RBW is enhanced by, is degraded by or is insensitive to external finite deformation. Not only does this book address the challenges of new topology optimization methods for computational design of phononic crystals; yet, it demonstrated the suitability and applicability of the topological designs by experimental validation. Furthermore, it offers a comprehensive review of the existing optimization-based approaches for the design of finite non-periodic acoustic metamaterial structures, acoustic metamaterial lattice structures and acoustic metamaterials under perfect periodicity.







Duality Symmetry


Book Description

Symmetry is one of the most general concepts in physics. Symmetry arguments are used to explain and predict observations at all length scales, from elementary particles to cosmology. The generality of symmetry arguments, combined with their simplicity, makes them a powerful tool for both fundamental and applied investigations. In electrodynamics, one of the symmetries is the invariance of the equations under exchange of electric and magnetic quantities. The continuous version of this symmetry is most commonly known as electromagnetic duality symmetry. This concept has been accepted for more than a century, and, throughout this time, has influenced other areas of physics, like high energy physics and gravitation. This Special Issue is devoted to electromagnetic duality symmetry and other vareities of dualities in physics. It contains four Articles, one Review and one Perspective. The context of the contributions ranges from string theory to applied nanophotonics, which, as anticipated, shows that duality symmetries in general and electromagnetic duality symmetry in particular are useful in a wide variety of physics fields, both theoretical and applied. Moreover, a number of the contributions show how the use of symmetry arguments and the quantification of symmetry breaking can successfully guide our theoretical understanding and provide us with guidelines for system design.




Integrated Nanophotonics


Book Description

Helps readers understand the important advances in nanophotonics materials development and their latest applications This book introduces the current state of and emerging trends in the development of integrated nanophotonics. Written by three well-qualified authors, it systematically reviews the knowledge of integrated nanophotonics from theory to the most recent technological developments. It also covers the applications of integrated nanophotonics in essential areas such as neuromorphic computing, biosensing, and optical communications. Lastly, it brings together the latest advancements in the key principles of photonic integrated circuits, plus the recent advances in tackling the barriers in photonic integrated circuits. Sample topics included in this comprehensive resource include: Platforms for integrated nanophotonics, including lithium niobate nanophotonics, indium phosphide nanophotonics, silicon nanophotonics, and nonlinear optics for integrated photonics The devices and technologies for integrated nanophotonics in on-chip light sources, optical packaging of photonic integrated circuits, optical interconnects, and light processing devices Applications on neuromorphic computing, biosensing, LIDAR, and computing for AI and artificial neural network and deep learning Materials scientists, physicists, and physical chemists can use this book to understand the totality of cutting-edge theory, research, and applications in the field of integrated nanophotonics.




Bioinspired Photonics


Book Description

Harness the Wonders of the Natural World As our in-depth knowledge of biological systems increases, the number of devices and applications built from these principles is rapidly growing. Bioinspired Photonics: Optical Structures and Systems Inspired by Nature provides an interdisciplinary introduction to the captivating and diverse photonic systems







State-of-the-Art Materials Science in Belgium 2017


Book Description

This book is a printed edition of the Special Issue "State-of-the-Art Materials Science in Belgium 2017" that was published in Materials




Machine Learning for Future Fiber-Optic Communication Systems


Book Description

Machine Learning for Future Fiber-Optic Communication Systems provides a comprehensive and in-depth treatment of machine learning concepts and techniques applied to key areas within optical communications and networking, reflecting the state-of-the-art research and industrial practices. The book gives knowledge and insights into the role machine learning-based mechanisms will soon play in the future realization of intelligent optical network infrastructures that can manage and monitor themselves, diagnose and resolve problems, and provide intelligent and efficient services to the end users. With up-to-date coverage and extensive treatment of various important topics related to machine learning for fiber-optic communication systems, this book is an invaluable reference for photonics researchers and engineers. It is also a very suitable text for graduate students interested in ML-based signal processing and networking. - Discusses the reasons behind the recent popularity of machine learning (ML) concepts in modern optical communication networks and the why/where/how ML can play a unique role - Presents fundamental ML techniques like artificial neural networks (ANNs), support vector machines (SVMs), K-means clustering, expectation-maximization (EM) algorithm, principal component analysis (PCA), independent component analysis (ICA), reinforcement learning, and more - Covers advanced deep learning (DL) methods such as deep neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs) - - Individual chapters focus on ML applications in key areas of optical communications and networking