Organic Photonic Materials and Devices
Author :
Publisher :
Page : 294 pages
File Size : 43,60 MB
Release : 2000
Category : Electrooptical devices
ISBN :
Author :
Publisher :
Page : 294 pages
File Size : 43,60 MB
Release : 2000
Category : Electrooptical devices
ISBN :
Author : Maryanne Large
Publisher : Springer Science & Business Media
Page : 248 pages
File Size : 16,37 MB
Release : 2007-08-29
Category : Technology & Engineering
ISBN : 0387686177
This book provides the reader with a clear overview of the considerable body of research and development work carried out in the last five years on microstructured polymer optical fibres (mPOFs). It discusses new applications which will be opened up by this emerging technology and includes for the first time details about the fabrication process for these fibres. The book provides an excellent introduction to this new technology.
Author : Jia-Ming Liu
Publisher : Cambridge University Press
Page : 271 pages
File Size : 44,48 MB
Release : 2018-12-13
Category : Science
ISBN : 1108476686
Graphene is a single-layer crystal of carbon, the thinnest two-dimensional material. It has unique electronic and photonic properties.
Author : Richart E. Slusher
Publisher : Springer Science & Business Media
Page : 382 pages
File Size : 29,49 MB
Release : 2013-06-29
Category : Science
ISBN : 3662051443
Nonlinear optical studies of periodic dielectric structures have blossomed in the past two decades. New fabrication techniques are producing fiber grating and multidimensional photonic crystals in materials where the refractive index can be varied by light pulses and beams. Gap solitons that can propagate at any velocity from zero to the speed of light and spatial solitons that prevent the diffractive spread of light in waveguide arrays are two examples of the new phenomena described in this book. Many new materials and structures are being developed that will impact new optical devices with applications in optical communications and optical data processing. All the above topics are addressed in detail in this book.
Author : Davide Comoretto
Publisher : Springer
Page : 504 pages
File Size : 36,66 MB
Release : 2015-07-20
Category : Technology & Engineering
ISBN : 3319165801
This book provides a multidisciplinary perspective (ranging from chemistry to physics and biology) of the current research and applications of organic and hybrid photonic crystals. The authors detail the chemical and physical tools used to develop organic photonic crystals, explain methods for engineering new nano-structures, and propose novel physical phenomena or technological applications based on such materials. Organic and Hybrid Photonic Crystal lasers, sensors, photovoltaic devices and stimuli responsive devices are discussed.
Author : Mario Agio
Publisher : Cambridge University Press
Page : 481 pages
File Size : 29,85 MB
Release : 2013-01-03
Category : Science
ISBN : 110701414X
This consistent and systematic review of recent advances in optical antenna theory and practice brings together leading experts in the fields of electrical engineering, nano-optics and nano-photonics, physical chemistry and nanofabrication. Fundamental concepts and functionalities relevant to optical antennas are explained, together with key principles for optical antenna modelling, design and characterisation. Recognising the tremendous potential of this technology, practical applications are also outlined. Presenting a clear translation of the concepts of radio antenna design, near-field optics and field-enhanced spectroscopy into optical antennas, this interdisciplinary book is an indispensable resource for researchers and graduate students in engineering, optics and photonics, physics and chemistry.
Author : Joseph H. Simmons
Publisher : Academic Press
Page : 416 pages
File Size : 47,74 MB
Release : 2000
Category : Science
ISBN : 9780126441406
Optical Materials presents, in a unified form, the underlying physical and structural processes that determine the optical behavior of materials. It does this by combining elements from physics, optics, and materials science in a seamless manner, and introducing quantum mechanics when needed. The book groups the characteristics of optical materials into classes with similar behavior. In treating each type of material, the text pays particular attention to atomic composition and chemical makeup, electronic states and band structure, and physical microstructure so that the reader will gain insight into the kinds of materials engineering and processing conditions that are required to produce a material exhibiting a desired optical property. The physical principles are presented on many levels, including a physical explanation, followed by formal mathematical support and examples and methods of measurement. The reader may overlook the equations with no loss of comprehension, or may use the text to find appropriate equations for calculations of optical properties. Presents the optical properties of metals, insulators, semiconductors, laser materials, and non-linear materials Physical processes are discussed and quantified using precise mathematical treatment, followed by examples and a discussion of measurement methods Authors combine many years of expertise in condensed matter physics, classical and quantum optics, and materials science The text is written on many levels and will benefit the novice as well as the expert Explains the concept of color in materials Explains the non-linear optical behavior of materials in a unified form Appendices present rigorous derivations
Author : Sreekanth K. V.
Publisher : Springer
Page : 178 pages
File Size : 34,55 MB
Release : 2019-06-27
Category : Science
ISBN : 9811388911
This book highlights recent advances in thin-film photonics, particularly as building blocks of metamaterials and metasurfaces. Recent advances in nanophotonics has demonstrated remarkable control over the electromagnetic field by tailoring the optical properties of materials at the subwavelength scale which results in the emergence of metamaterials and metasurfaces. However, most of the proposed platforms require intense lithography which makes them of minor practical relevance. Stacked ultrathin-films of dielectrics, semi-conductors, and metals are introduced as an alternative platform that perform unique or similar functionalities. This book discusses the new era of thin film photonics and its potential applications in perfect and selective light absorption, structural coloring, biosensing, enhanced spontaneous emission, reconfigurable photonic devices and super lensing.
Author : Oksana Ostroverkhova
Publisher : Elsevier
Page : 832 pages
File Size : 43,21 MB
Release : 2013-08-31
Category : Technology & Engineering
ISBN : 0857098764
Small molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications.Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices.The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices. - Comprehensively examines the properties of organic optoelectronic and nonlinear optical materials - Discusses their applications in different devices including solar cells, LEDs and electronic memory devices - An essential technical resource for physicists, chemists, electrical engineers and materials scientists
Author : Ali Kemal Yetisen
Publisher : Springer
Page : 175 pages
File Size : 10,39 MB
Release : 2014-12-03
Category : Science
ISBN : 3319135848
This thesis presents a theoretical and experimental approach for the rapid fabrication, optimization and testing of holographic sensors for the quantification of pH, organic solvents, metal cations, and glucose in solutions. Developing non-invasive and reusable diagnostics sensors that can be easily manufactured will support the monitoring of high-risk individuals in any clinical or point-of-care setting. Sensor fabrication approaches outlined include silver-halide chemistry, laser ablation and photopolymerization. The sensors employ off-axis Bragg diffraction gratings of ordered silver nanoparticles and localized refractive index changes in poly (2-hydroxyethyl methacrylate) and polyacrylamide films. The sensors exhibited reversible Bragg peak shifts, and diffracted the spectrum of narrow-band light over the wavelength range λpeak ≈ 495-1100 nm. Clinical trials of glucose sensors in the urine samples of diabetic patients demonstrated that they offer superior performance compared to commercial high-throughput urinalysis devices. Lastly, a generic smartphone application to quantify colorimetric tests was developed and tested for both Android and iOS operating systems. The sensing platform and smartphone application may have implications for the development of low-cost, reusable and equipment-free point-of-care diagnostic devices.