Photonics and Photoactive Materials


Book Description

The book focuses on innovative photonic and photoactive materials and such topics as photonic structures, silicon photonics, nanomaterials, plasmonics, graphene quantum dots, optically active defects, fluorescent materials and optical sensors. The generation of light, absorption, emission, transmission, optical sensing and probing, signal processing and data transmission are some of the properties related to this growing field. Keywords: Photonic Structures, Silicon Photonics, Plasmonics, Silver Nanoparticles, Graphene Quantum Dots, Optically Active Defects, Fluorescent Materials, Optical Sensors, Fullerene, Proton Beam Detectors, Lithium Fluoride Films, Signal Processing, Data Transmission.




Photovoltaic and Photoactive Materials


Book Description

The primary objective of this NATO Advanced Study Institute (ASI) was to present an up-to-date overview of various current areas of interest in the field of photovoltaic and related photoactive materials. This is a wide-ranging subject area, of significant commercial and environmental interest, and involves major contributions from the disciplines of physics, chemistry, materials, electrical and instrumentation engineering, commercial realisation etc. Therefore, we sought to adopt an inter disciplinary approach, bringing together recognised experts in the various fields while retaining a level of treatment accessible to those active in specific individual areas of research and development. The lecture programme commenced with overviews of the present relevance and historical development of the subject area, plus an introduction to various underlying physical principles of importance to the materials and devices to be addressed in later lectures. Building upon this, the ASI then progressed to more detailed aspects of the subject area. We were also fortunately able to obtain a contribution from Thierry Langlois d'Estaintot of the European Commission Directorate, describing present and future EC support for activities in this field. In addition, poster sessions were held throughout the meeting, to allow participants to present and discuss their current activities. These were supported by what proved to be very effective feedback sessions (special thanks to Martin Stutzmann), prior to which groups of participants enthusiastically met (often in the bar) to identify and agree topics of common interest.




Photoactive Materials


Book Description

This book presents a collection of 13 original research articles that focus on the science of light-matter interaction. This area of science has been led to some the greatest accomplishments of the past 100 years, with the discovery of materials that perform useful operations by collecting light or generating light from an outside stimulus. These materials are at the center of a multitude of technologies that have permeated our daily life; every day we rely on quantum well lasers for telecommunication, organic light emitting diodes for our displays, complementary metal-oxide-semiconductors for our camera detectors, and of course a plethora of new photovoltaic cells that harvest sunlight to satisfy our energy needs. In this book, top-rated researchers present their latest findings in the field of nano-particles, plasmonics, semi-conductors, magneto-optics, and holography.




Photoactive Functional Soft Materials


Book Description

This book covers the design, synthesis, properties, and applications of functional photoactive soft materials, including aspects of polymers, block copolymers, elastomers, biomaterials, liquid crystals, chemical and physical gels, colloids, and host-guest systems. It combines, in a unified manner, authoritative accounts describing various structural and functional aspects of photoactive soft materials. Photoactive Functional Soft Materials: Preparation, Properties, and Applications: * Brings together the state-of-the-art knowledge on photoactive functional soft materials in a unified manner * Covers a vibrant research field with tremendous application potential in areas such as optoelectronics, photonics, and energy generation * Appeals to a large interdisciplinary audience because it is highly useful for researchers and engineers working on photonics, optoelectronics, imaging and sensing, nanotechnology, and energy materials Photoactive Functional Soft Materials: Preparation, Properties and Applications focuses on the design and fabrication of photoactive functional soft materials for materials science, nanophotonics, nanotechnology, and biomedical applications.




Photonics, Volume 2


Book Description

Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Crystals;Metamaterials; Micro-and Nanostructure Fabrication; Nanomaterials;Nanotubes; Plasmonics; Quantum Dots; Spintronics; Thin FilmOptics Comprehensive and accessible coverage of the whole of modernphotonics Emphasizes processes and applications that specifically exploitphoton attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences;Industrial and academic researchers in photonics, graduate studentsin the area; College lecturers, educators, policymakers,consultants, Scientific and technical libraries, governmentlaboratories, NIH.







Excitonic and Photonic Processes in Materials


Book Description

This book is expected to present state-of-the-art understanding of a selection of excitonic and photonic processes in useful materials from semiconductors to insulators to metal/insulator nanocomposites, both inorganic and organic. Among the featured applications are components of solar cells, detectors, light-emitting devices, scintillators and materials with novel optical properties. Excitonic properties are particularly important in organic photovoltaics and light emitting devices, as also in questions of the ultimate resolution and efficiency of new-generation scintillators for medical diagnostics, border security and nuclear non proliferation. Novel photonic and optoelectronic applications benefit from new material combinations and structures to be discussed.




Handbook of Organic Materials for Electronic and Photonic Devices


Book Description

Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design. Provides a comprehensive overview of the materials, mechanisms, characterization techniques, and structure property relationships of organic electronic and photonic materials Reviews key applications, including organic solar cells, light-emitting diodes electrochemical cells, sensors, transistors, bioelectronics, and memory devices New content to reflect latest advances in our understanding of underlying physics to enable material design and device fabrication




Organic Materials for Photonics


Book Description

Polyconjugated organic materials are revealing amorphous electrical and non-linear optical properties; this fact is opening up a whole new field of Materials Science aimed at the development of new technologies. For many years inorganic materials were studied mostly for non-linear optical properties. When organic molecules began to show larger and faster responses, both physical chemists and organic chemists became involved in understanding the physical phenomena at a molecular level, with the hope of synthesizing new and better molecular systems. The non-linear optical responses of this class of organic materials are presently attracting considerable attention as an active field of research both in academic and industrial laboratories. Due to the variety of problems and techniques involved, students and beginners with different backgrounds who approach polyconjugated materials do not find it an easy field to enter. This book introduces in a comprehensive and tutorial way the necessary concepts and relevant references which will help the reader to grasp the fundamental concepts of polyconjugated organic materials and perceive the relations between them.