Photosynthesis-Assisted Energy Generation


Book Description

Photosynthesis-Assisted Energy Generation Describes the mechanisms of and potential for using microorganisms and plants as renewable power resources Bridging the knowledge gap between the fundamentals and the technological advances in biological photosynthesis-assisted energy generation, Photosynthesis-Assisted Energy Generation explores the various diverse light-harvesting biological systems for electricity generation and explains the fundamentals and applications from lab-scale to in-field. The text discusses the fundamentals of electron transfer mechanisms in photosynthetic systems, basic principles of bioelectricity generation, and materials involved in the construction of fuel cells, including not only the impact of higher plants, but also anoxygenic and oxygenic photosynthetic bacteria and microalgae on the performance of photosynthesis-assisted power generation systems. A timely resource, the text features case studies on emerging topics such as mosses in power generation on green roofs and photo-bioelectrochemical fuel cells for antibiotics and dyes removal, along with discussion of sustainability issues when scaling up bio-photo-electrochemical systems. Edited by two highly qualified and accomplished academics with significant research experience in the field, Photosynthesis-Assisted Energy Generation includes information on: Role of functional materials involved in photosynthesis-assisted power generation and non-noble electrocatalysts as air cathodes in biocells Electricity generation and intensified synthesis of nutrients by plant-based biofuel cells using duckweeds as biocatalysts Algae-based microbial fuel cells, photosynthetic bacteria-based microbial fuel cells, and bryophyte microbial fuel cell systems Progress and recent trends of application of low-energy consuming devices and IoT based on photosynthesis-assisted power generation Plant-based microbial fuel cells for bioremediation, biosensing, and plant health monitoring With full coverage of an attractive renewable energy generation system, Photosynthesis-Assisted Energy Generation is an essential resource on the subject for researchers and scientists interested in alternative renewable energetics and photosynthesis-assisted energy generation processes utilizing microorganisms, algae, plants, and other bioinspired materials.




Photosynthesis-Assisted Energy Generation


Book Description

Photosynthesis-Assisted Energy Generation Describes the mechanisms of and potential for using microorganisms and plants as renewable power resources Bridging the knowledge gap between the fundamentals and the technological advances in biological photosynthesis-assisted energy generation, Photosynthesis-Assisted Energy Generation explores the various diverse light-harvesting biological systems for electricity generation and explains the fundamentals and applications from lab-scale to in-field. The text discusses the fundamentals of electron transfer mechanisms in photosynthetic systems, basic principles of bioelectricity generation, and materials involved in the construction of fuel cells, including not only the impact of higher plants, but also anoxygenic and oxygenic photosynthetic bacteria and microalgae on the performance of photosynthesis-assisted power generation systems. A timely resource, the text features case studies on emerging topics such as mosses in power generation on green roofs and photo-bioelectrochemical fuel cells for antibiotics and dyes removal, along with discussion of sustainability issues when scaling up bio-photo-electrochemical systems. Edited by two highly qualified and accomplished academics with significant research experience in the field, Photosynthesis-Assisted Energy Generation includes information on: Role of functional materials involved in photosynthesis-assisted power generation and non-noble electrocatalysts as air cathodes in biocells Electricity generation and intensified synthesis of nutrients by plant-based biofuel cells using duckweeds as biocatalysts Algae-based microbial fuel cells, photosynthetic bacteria-based microbial fuel cells, and bryophyte microbial fuel cell systems Progress and recent trends of application of low-energy consuming devices and IoT based on photosynthesis-assisted power generation Plant-based microbial fuel cells for bioremediation, biosensing, and plant health monitoring With full coverage of an attractive renewable energy generation system, Photosynthesis-Assisted Energy Generation is an essential resource on the subject for researchers and scientists interested in alternative renewable energetics and photosynthesis-assisted energy generation processes utilizing microorganisms, algae, plants, and other bioinspired materials.




Natural and Artificial Photosynthesis


Book Description

This technical book explores current and future applications of solar power as an unlimited source of energy that earth receives every day. Photosynthetic organisms have learned to utilize this abundant source of energy by converting it into high-energy biochemical compounds. Inspired by the efficient conversion of solar energy into an electron flow, attempts have been made to construct artificial photosynthetic systems capable of establishing a charge separation state for generating electricity or driving chemical reactions. Another important aspect of photosynthesis is the CO2 fixation and the production of high energy compounds. Photosynthesis can produce biomass using solar energy while reducing the CO2 level in air. Biomass can be converted into biofuels such as biodiesel and bioethanol. Under certain conditions, photosynthetic organisms can also produce hydrogen gas which is one of the cleanest sources of energy.




Light-Harvesting Antennas in Photosynthesis


Book Description

Light-Harvesting Antennas in Photosynthesis is concerned with the most important process on earth - the harvesting of light energy by photosynthetic organisms. This book provides a comprehensive treatment of all aspects of photosynthetic light-harvesting antennas, from the biophysical mechanisms of light absorption and energy transfer to the structure, biosynthesis and regulation of antenna systems in whole organisms. It sets the great variety of antenna pigment-protein complexes in their evolutionary context and at the same time brings in the latest hi-tech developments. The book is unique in the degree to which it emphasizes the integration of molecular biological, biochemical and biophysical approaches. Overall, a well-organized, understandable, and comprehensive volume. It will be a valuable resource for both graduate students and their professors, and a helpful library reference book for undergraduates.




Solar Energy Update


Book Description




Strategic Plan


Book Description




Energy


Book Description




Photosynthesis: Solar Energy For Life


Book Description

Photosynthesis has been an important field of research for more than a century, but the present concerns about energy, environment and climate have greatly intensified interest in and research on this topic. Research has progressed rapidly in recent years, and this book is an interesting read for an audience who is concerned with various ways of harnessing solar energy.Our understanding of photosynthesis can now be said to have reached encyclopedic dimensions. There have been, in the past, many good books at various levels. Our book is expected to fulfill the needs of advanced undergraduate and beginning graduate students in branches of biology, biochemistry, biophysics, and bioengineering because photosynthesis is the basis of future advances in producing more food, more biomass, more fuel, and new chemicals for our expanding global human population. Further, the basics of photosynthesis are and will be used not only for the above, but in artificial photosynthesis, an important emerging field where chemists, researchers and engineers of solar energy systems will play a major role.







Fossil Energy Update


Book Description




Recent Books