Photothermal Nanomaterials


Book Description

The exploration of photothermal nanomaterials with high light-to-heat conversion efficiency has paved the way for practical applications, including in cancer therapy, environmental remediation, catalysis, imaging and biomedicine. Covering the photothermal effect of different categories of light-absorbing nanomaterials, and focusing on metallic nanomaterials, 2D materials, semiconductors, carbon-based nanomaterials, polymeric nanomaterials and their composites, chapters in this book provide a systematic summary of recent advances in the fabrication and application of photothermal nanomaterials, discussing advantages, challenges and potential opportunities. This text will be a valuable resource for scientists working on photothermal nanomaterials, as well as those interested in the applications across chemistry, biomedicine, nanotechnology and materials science.




Photothermal Nanomaterials


Book Description

This book covers the photothermal effect of different categories of light-absorbing nanomaterials.







Nanomaterials for Drug Delivery and Therapy


Book Description

Nanomaterials for Drug Delivery and Therapy presents recent advances in the field of nanobiomaterials and their important applications in drug delivery, therapy and engineering. The book offers pharmaceutical perspectives, exploring the development of nanobiomaterials and their interaction with the human body. Chapters show how nanomaterials are used in treatments, including neurology, dentistry and cancer therapy. Authored by a range of contributors from global institutions, this book offers a broad, international perspective on how nanotechnology-based advances are leading to novel drug delivery and treatment solutions. It is a valuable research resource that will help both practicing medics and researchers in pharmaceutical science and nanomedicine learn more on how nanotechnology is improving treatments. Assesses the opportunities and challenges of nanotechnology-based drug delivery systems Explores how nanotechnology is being used to create more efficient drug delivery systems Discusses which nanomaterials make the best drug carriers




Novel Nanomaterials for Biomedical, Environmental and Energy Applications


Book Description

Novel Nanomaterials for Biomedical, Environmental, and Energy Applications is a comprehensive study on the cutting-edge progress in the synthesis and characterization of novel nanomaterials and their subsequent advances and uses in biomedical, environmental and energy applications. Covering novel concepts and key points of interest, this book explores the frontier applications of nanomaterials. Chapters discuss the overall progress of novel nanomaterial applications in the biomedical, environmental and energy fields, introduce the synthesis, characterization, properties and applications of novel nanomaterials, discuss biomedical applications, and cover the electrocatalytical and photothermal effects of novel nanomaterials for efficient energy applications. The book will be invaluable to academic researchers and biomedical clinicians working with nanomaterials. Offers comprehensive details on novel and emerging nanomaterials Presents a comprehensive view of new and emerging tactics for the synthesis of efficient nanomaterials Describes and monitors the functions of applications of new and emerging nanomaterials in the biomedical, environmental and energy fields




World Scientific Reference On Plasmonic Nanomaterials: Principles, Design And Bio-applications (In 5 Volumes)


Book Description

World Scientific Reference on Plasmonic Nanomaterials: Principles, Design and Bio-applications is a book collection that encompasses multiple aspects of the exciting and timely field of nanoplasmonics, under the coordination of international plasmonic nanomaterials expert, Dr Luis Liz-Marzán. Plasmonics has a long history, from stained glass in ancient cathedrals, through pioneering investigations by Michael Faraday, all the way into the nanotechnology era, where it blossomed into an extremely active field of research with potential applications in a wide variety of technologies.Given the breadth of the materials, phenomena and applications related to plasmonics, this Reference Set offers a collection of chapters within dedicated volumes, focusing on the description of selected phenomena, with an emphasis in chemistry as an enabling tool for the fabrication of, often sophisticated, plasmonic nanoarchitectures and biomedicine as the target application.Basic principles of surface plasmon resonances are described, as well as those mechanisms related to related phenomena such as surface-enhanced spectroscopies or plasmonic chirality. Under the guidance of theoretical models, wet chemistry methods have been implemented toward the synthesis of a wide variety of nanoparticles with different compositions and tailored morphology. But often the optimal nanoarchitecture requires post-synthesis treatments, including functionalization of nanoparticle surfaces, application of external stimuli toward self-assembly into well-defined supraparticle structures and so-called supercrystals. All such nanomaterials can find applications in various biomedical aspects, most often in relation to diagnosis, through either the detection of disease biomarkers at extremely low concentrations or the design of bioimaging methods for in vivo monitoring. Additionally, novel therapeutic tools can also profit from plasmonic nanomaterials, such as photothermal therapy or nanocatalysis.The reference set thus offers comprehensive information of an extremely active subset within the world of plasmonic nanomaterials and their applications, which aims at not just collecting existing knowledge but also promoting further research and technology transfer into the market and the clinic.




Bioengineered Nanomaterials for Wound Healing and Infection Control


Book Description

Bioengineered Nanomaterials for Wound Healing and Infection Control is a key reference for those working in the fields of materials science, pharmacy, nanotechnology, biomedical engineering and microbiology. Bioengineered nanomaterials have unique physicochemical properties which promote accelerated wound healing and treatment of infections. The biosynthesis of these nanomaterials also offers a clean, safe and renewable alternative to traditional nanomaterials, helping reduce environmental impact alongside antibacterial resistance. Provides an overview of the role of biofilms and multidrug resistance in wound infections Covers a range of bioengineered nanomaterial types and nanotechnology-based approaches, including phyconanotechnology, phytonanotechnology and microbial nanotechnology Helps readers discover novel materials for use in wound healing and infection control while reducing the probability of antibiotic resistance




Nanophototherapy


Book Description

Nanophototherapy: Preparations and Applications provides a comprehensive overview of the various multifunctional nanoparticles used for phototherapy, with an emphasis on fundamental nanotechnology and the latest research of photothermal therapy (PTT) and photodynamic therapy (PDT). The different types of phototherapeutic nanomaterials are thoroughly described, along with their structural features and synthesis. This is the first book to cover nanomaterial-based phototherapy for both cancer and bacterial infections. It is an essential resource for researchers, academics, and professionals interested in the potential of multifunctional nanomaterials for therapeutic applications. Overviews the types, structural features, design, and fabrication of advanced nanomaterial-based phototherapy of cancer and microbial infections Provides fundamentals and reviews the latest research on nanomaterial-based phototherapy for the treatment of cancer and bacterial infections Features definitions, synthesis, and characterization of various nanomaterials, such as NIR-based metals, photosensitizer-loaded nanomaterials, polymer nanoparticles, and more




New Nanomaterials and Techniques for Tumor-targeted Systems


Book Description

This book summarizes the latest advances in nanomaterials and techniques in the field of tumor-targeted diagnosis and therapy. It provides valuable information for beginners and senior researchers, and stimulates new research directions by offering novel and provocative insights into the properties and technical principles of nanomaterials. The book systemically discusses the challenges in tumor treatment, current tumor-targeted strategies, drug-release strategies, diagnosis and therapeutic patterns, and also explores newly developed multifunctional nanomaterials and related systems.




Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine


Book Description

Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine "Nanorobotics and nanodiagnostics” can be defined as a new generation of biohybrid and nanorobotics that translate fundamental biological principles into engineering design rules, or integrative living components into synthetic structures to create biorobots and nanodiagnotics that perform like natural systems. Nanorobots or nanobots are structured of a nanoscale made of individual assemblies. They can be termed as intelligent systems manufactured with self-assembly strategies by chemical, physical and biological approaches. The nanorobot can determine the structure and enhance the adaptability to the environment in interdisciplinary tasks. "Nanorobotics and nanodiagnostics" is a new generation of biohybrid that translates fundamental biological principles into engineering design rules to create biorobots that perform like natural systems. These biorobotics and diagnostics can now perform various missions to be accomplished certain tasks in the research areas such as integrative biology and biomedicine. "Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine" sheds light on a comprehensive overview of the multidisciplinary areas that explore nanotherapeutics and nanorobotic manipulation in biology and medicine. It provides up-to-date knowledge of the promising fields of integrative biology and biomedicine for nano-assisted biorobotics and diagnostics to detect and treat diseases that will enable new scientific discoveries. /div