Optimization of Photovoltaic Power Systems


Book Description

Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB® and Simulink® packages to help the reader understand and evaluate the performance of different photovoltaic systems. Optimisation of Photovoltaic Power Systems provides engineers, graduate and postgraduate students with the means to understand, assess and develop their own photovoltaic systems. As such, it is an essential tool for all those wishing to specialise in stand-alone photovoltaic systems. Optimisation of Photovoltaic Power Systems aims to enable all researchers in the field of electrical engineering to thoroughly understand the concepts of photovoltaic systems; find solutions to their problems; and choose the appropriate mathematical model for optimising photovoltaic energy.




Solar Photovoltaic Energy


Book Description

Providing designers, installers and managers with the tools and methods for the effective writing of technical reports and the ability to calculate, install and maintain the necessary components of photovoltaic energy.




Solar Energy


Book Description

An introduction to the fundamental science and engineering of solar energy technologies. Gives a concise and detailed review of solar energy and its interaction with materials, and discusses photovoltaic devices and solar thermal technologies like the solar chimney, solar (power) tower, flat plate water heater, and electricity generation.




Solar Power Finance Without The Jargon


Book Description

Solar power has become big business, with $131 billion invested in 2018, up from just $11.2 billion in 2004 but down from $171 billion in 2017 as unit costs fell. New installed capacity grew from 1.1GW in 2004 to about 107GW in 2018, a steady rise as solar begins to compete with fossil fuels on cost and to be built in nearly every country.This is a book for the solar workers of the future, a business book for those without a business or economics background and those simply curious about major shifts happening in the world energy economy. Key financial, economic and technical concepts are interspersed with the history of the first decade of cheap solar power, and the author's experience of being part of a successful startup in the clean energy sector.Related Link(s)




Solar Power


Book Description

In this important new primer, Dustin Mulvaney makes a passionate case for the significance of solar power energy and offers a vision for a more sustainable and just solar industry for the future. The solar energy industry has grown immensely over the past several years and now provides up to a fifth of California’s power. But despite its deservedly green reputation, solar development and deployment have potential social and environmental consequences, from poor factory labor standards to landscape impacts on wildlife. Using a wide variety of case studies and examples to trace the life cycle of photovoltaics, Mulvaney expertly outlines the state of the solar industry, exploring the ongoing conflicts between ecological concerns and climate mitigation strategies, as well as current trade disputes and the fate of toxins in solar waste products. This exceptional overview will outline the industry’s current challenges and possible future for students in environmental studies, energy policy, environmental sociology, and other aligned fields.




Solar Revolution


Book Description

An innovative analysis that shows how the shift to solar energy—in particular, the use of photovoltaic cells—is both economically advantageous and inevitable, and will rival the information and communication technologies revolution in its transformative effects. In Solar Revolution, fund manager and former corporate buyout specialist Travis Bradford argues—on the basis of standard business and economic forecasting models—that over the next two decades solar energy will increasingly become the best and cheapest choice for most electricity and energy applications. Solar Revolution outlines the path by which the transition to solar technology and sustainable energy practices will occur. Developments in the photovoltaic (PV) industry over the last ten years have made direct electricity generation from PV cells a cost-effective and feasible energy solution, despite the common view that PV technology appeals only to a premium niche market. Bradford shows that PV electricity today has become the choice of hundreds of thousands of mainstream homeowners and businesses in many markets worldwide, including Japan, Germany, and the American Southwest. Solar energy will eventually be the cheapest source of energy in nearly all markets and locations because PV can bypass the aging and fragile electricity grid and deliver its power directly to the end user, fundamentally changing the underlying economics of energy. As the scale of PV production increases and costs continue to decline at historic rates, demand for PV electricity will outpace supply of systems for years to come. Ultimately, the shift from fossil fuels to solar energy will take place not because solar energy is better for the environment or energy security, or because of future government subsidies or as yet undeveloped technology. The solar revolution is already occurring through decisions made by self-interested energy users. The shift to solar energy is inevitable and will be as transformative as the last century's revolutions in information and communication technologies.




Photovoltaic Solar Energy


Book Description

Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date account of existing PV technologies in conjunction with an assessment of technological developments. Key features: Written by leading specialists active in concurrent developments in material sciences, solar cell research and application-driven R&D. Provides a basic knowledge base in light, photons and solar irradiance and basic functional principles of PV. Covers characterization techniques, economics and applications of PV such as silicon, thin-film and hybrid solar cells. Presents a compendium of PV technologies including: crystalline silicon technologies; chalcogenide thin film solar cells; thin-film silicon based PV technologies; organic PV and III-Vs; PV concentrator technologies; space technologies and economics, life-cycle and user aspects of PV technologies. Each chapter presents basic principles and formulas as well as major technological developments in a contemporary context with a look at future developments in this rapidly changing field of science and engineering. Ideal for industrial engineers and scientists beginning careers in PV as well as graduate students undertaking PV research and high-level undergraduate students.




Photovoltaic Power System


Book Description

Photovoltaic Power System: Modelling, Design and Control is an essential reference with a practical approach to photovoltaic (PV) power system analysis and control. It systematically guides readers through PV system design, modelling, simulation, maximum power point tracking and control techniques making this invaluable resource to students and professionals progressing from different levels in PV power engineering. The development of this book follows the author's 15-year experience as an electrical engineer in the PV engineering sector and as an educator in academia. It provides the background knowledge of PV power system but will also inform research direction. Key features: Details modern converter topologies and a step-by-step modelling approach to simulate and control a complete PV power system. Introduces industrial standards, regulations, and electric codes for safety practice and research direction. Covers new classification of PV power systems in terms of the level of maximum power point tracking. Contains practical examples in designing grid-tied and standalone PV power systems. Matlab codes and Simulink models featured on a Wiley hosted book companion website.




Choosing Solar Electricity


Book Description

Choosing Solar Electricity shows you how to assess your solar resource and teaches you the ins and outs of solar power so you can talk to a PV installer with confidence. It includes full details of feed-in tariff incentives, which makes solar electricity an economically viable option for every solar friendly home, office, business or community.




Third Generation Photovoltaics


Book Description

Photovoltaics, the direct conversion of sunlight to electricity, is now the fastest growing technology for electricity generation. Present "first generation" products use the same silicon wafers as in microelectronics. "Second generation" thin-films, now entering the market, have the potential to greatly improve the economics by eliminating material costs. Martin Green, one of the world’s foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films. The book explores, self-consistently, the energy conversion potential of advanced approaches for improving photovoltaic performance and outlines possible implementation paths.