Physical Models and Laboratory Techniques in Coastal Engineering


Book Description

Laboratory physical models are a valuable tool for coastal engineers. Physical models help us to understand the complex hydrodynamic processes occurring in the nearshore zone and they provide reliable and economic engineering design solutions.This book is about the art and science of physical modeling as applied in coastal engineering. The aim of the book is to consolidate and synthesize into a single text much of the knowledge about physical modeling that has been developed worldwide.This book was written to serve as a graduate-level text for a course in physical modeling or as a reference text for engineers and researchers engaged in physical modeling and laboratory experimentation. The first three chapters serve as an introduction to similitude and physical models, covering topics such as advantages and disadvantages of physical models, systems of units, dimensional analysis, types of similitude and various hydraulic similitude criteria applicable to coastal engineering models.Practical application of similitude principles to coastal engineering studies is covered in Chapter 4 (Hydrodynamic Models), Chapter 5 (Coastal Structure Models) and Chapter 6 (Sediment Transport Models). These chapters develop the appropriate similitude criteria, discuss inherent laboratory and scale effects and overview the technical literature pertaining to these types of models. The final two chapters focus on the related subjects of laboratory wave generation (Chapter 7) and measurement and analysis techniques (Chapter 8).




Ocean Disposal of Wastewater


Book Description

This book offers a comprehensive study on the subject of ocean disposal of treated and untreated sewage waste. The early chapters cover the philosophy of outfall design, properties of sewage from developed towns and an overview of water quality regulations in New Zealand, Great Britain and the U.S. Alternative ways of satisfying these regulations are discussed. The book also provides information required to design outfall pipelines and diffusers.




Users Guide to Physical Modelling and Experimentation


Book Description

A Users Guide to Hydraulic Modelling and Experimentation provides a systematic, comprehensive summary of the progress made through HYDRALAB III . The book combines the expertise of many of the leading hydraulic experimentalists in Europe and identifies current best practice for carrying out state-of-the-art, modern laboratory investigations. In addition it gives an inventory and reviews recent advances in instrumentation and equipment that drive present and new developments in the subject. The Guide concentrates on four core areas – waves, breakwaters, sediments and the relatively-new (but rapidly-developing) cross-disciplinary area of hydrodynamics/ecology. Progress made through the ‘CoMIBBS’ component of HYDRALAB III provides the material for a chapter focussed on guidance, principles and practice for composite modelling. There is detailed consideration of scaling and the degree of relevance of laboratory/physical modelling approaches for specific contexts included in each of the individual chapters. The Guide includes outputs from the workshops and several of the innovative transnational access projects that have been supported within HYDRALAB III, as well as the focussed joint research activities SANDS and CoMIBBS. Its primary purpose is to serve as a shared resource to disseminate the outstanding advances achieved within HYDRALAB III but, even more than this, it is a tribute to the human and institutional collaborations that led to and sustained the research advances, the human relationships that were strengthened and initiated through joint participation in the Programme, and the training opportunities that participation provided to the many young researchers engaged in the projects.





Book Description




Coastal Engineering 2006


Book Description

This Proceedings contains 445 papers presented at the 30th International Conference on Coastal Engineering, which was held in San Diego, California, USA, 3-8 September 2006. The Proceedings is divided into five parts: Waves; Swash, Nearshore Currents, and Long Waves; Coastal Management, Risk, and Ecosystem Restoration; Sediment Transport and Morphology; and Coastal Structures. The individual papers cover a broad range of topics including theory, numerical and physical modeling, field measurements, case studies, design, and management. These papers provide engineers, scientists, and planners state-of-the-art information on coastal engineering and coastal processes.




Asian And Pacific Coasts 2009 (In 4 Volumes, With Cd-rom) - Proceedings Of The 5th International Conference On Apac 2009


Book Description

The coastal zone has always been an important frontier - for trade, food and the foundations of modern civilization. This same zone has also been exploited in one way or another, and sometimes without regard to the balance and schemes of Mother Nature. It is only when things go terribly wrong that we begin to react and attempt to undo the mistakes of the past. At times we have succeeded, but at a high price. At times, we have to retreat and concede defeat as the technology of man is no match to the force of nature. Over time, we learn to work with nature and leverage the science of nature to protect the coastal zone and hold our frontier between the sea and land.This proceeding presents the recent advances in all aspects of ocean and coastal research and management in the Asian and Pacific nations. The volume set provides a valuable source of information for scientists, engineers and professionals dealing with coastal zone issues and challenges in coastal, port and ocean engineering development, as well as the environmental impacts resulting from development of ocean and coastal areas.




Ocean Wave Energy Systems


Book Description

This book offers a timely review of wave energy and its conversion mechanisms. Written having in mind current needs of advanced undergraduates engineering students, it covers the whole process of energy generation, from waves to electricity, in a systematic and comprehensive manner. Upon a general introduction to the field of wave energy, it presents analytical calculation methods for estimating wave energy potential in any given location. Further, it covers power-take off (PTOs), describing their mechanical and electrical aspects in detail, and control systems and algorithms. The book includes chapters written by active researchers with vast experience in their respective filed of specialization. It combines basic aspects with cutting-edge research and methods, and selected case studies. The book offers systematic and practice-oriented knowledge to students, researchers, and professionals in the wave energy sector. Chapters 17 of this book is available open access under a CC BY 4.0 license at link.springer.com




Maritime Hydraulics: Flow Structure Interaction


Book Description

This unique compendium comprehensively covers several important topics related to the field of maritime hydraulics, particularly the underlying physics in the wave structure interaction with the coastal structures, coastal and inland flooding during extreme events in addition to perineal erosion. These topics are well understood through physical and numerical modelling, in which the scale effects, proving the models and its range of applicability are vividly discussed.This useful reference text serves as a guide to engineers, planners, researchers, decision makers and graduate students working in the field of coastal, estuarine and harbor engineering.




Theory and Application of Hydraulic Modeling


Book Description

This edited volume from Japan’s Research Subcommittee on Methodology for Dealing with Geomaterials in Hydraulic Model Experiments presents readers with a state-of-the-art overview of experimental and computational methods used to address similarity scaling incompatibilities present in fluid–sediment flows. Readers will gain an understanding of complex phenomena in the boundary fields of hydraulics and geotechnical engineering. Chapter contributors focus on the phenomena that are affected by the interactions between fluid wave and ground in a complex field, which for many years have been challenging to process and model. In addition to describing the implementation of model tests and the concept of the law of similarity, this book contrasts these phenomena with the laws of similarity, describes models and numeral analysis methods, and explains important considerations using experimental case studies. Each chapter is written by leading researchers in Japan who are members of the Research Subcommittee on Methodology for Dealing with Geomaterials in Hydraulic Model Experiments. The chapters are closely linked but are written so that each can be read individually. Readers will be able to apply this knowledge to their work and to create models that more accurately simulate the interactions between wave and ground, allowing them to better understand these phenomena and devise more appropriate strategies for defense and so on when necessary. This collection provides information that can be used by young researchers and post-graduate students in the boundary fields of hydraulics and geotechnical engineering who aim at becoming civil engineers, and it will be of particular value to practicing engineers of all experience levels who must regularly analyze complex interactions between fluids and ground.




Proceedings of the 4th International Conference on Sustainability in Civil Engineering


Book Description

This book contains the proceedings of the 4th International Conference on Sustainability in Civil Engineering, ICSCE 2022, held on November 25–27, 2022, in Hanoi, Vietnam. It presents the expertise of scientists and engineers in academia and industry in the field of bridge and highway engineering, construction materials, environmental engineering, engineering in Industry 4.0, geotechnical engineering, structural damage detection and health monitoring, structural engineering, geographic information system engineering, traffic, transportation and logistics engineering, and water resources, estuary, and coastal engineering.