Hydraulics of Levee Overtopping


Book Description

Earthen levees are extensively used to protect the population and infrastructure from periodic floods and high water due to storm surges. The causes of failure of levees include overtopping, surface erosion, internal erosion, and slope instability. Overtopping may occur during periods of flooding due to insufficient freeboard. The most problematic situation involves the levee being overtopped by both surge and waves when the surge level exceeds the levee crest elevation with accompanying wave overtopping. Overtopping of levees produces fast-flowing, turbulent water velocities on the landward-side slope that can potentially damage the protective grass covering and expose the underlying soil to erosion. If overtopping continues long enough, the erosion may eventually result in loss of levee crest elevation and possibly breaching of the protective structure. Hence, protecting levees from erosion by surge overflow and wave overtopping is necessary to assure a viable and safe levee system. This book presents a cutting-edge approach to understanding overtopping hydraulics under negative free board of earthen levees, and to the study of levee reinforcing methods. Combining soil erosion test, full-scale laboratory overtopping hydraulics test, and numerical modeling for the turbulent overtopping hydraulics. It provides an analysis that integrates the mechanical and hydraulic processes governing levee overtopping occurrences and engineering approaches to reinforce overtopped levees. Topics covered: surge overflow, wave overtopping and their combination, full-scale hydraulic tests, erosion tests, overtopping hydraulics, overtopping discharge, and turbulent analysis. This is an invaluable resource for graduate students and researchers working on levee design, water resource engineering, hydraulic engineering, and coastal engineering, and for professionals in the field of civil and environmental engineering, and natural hazard analysis.




Hydraulics of Levee Overtopping


Book Description

Earthen levees are extensively used to protect the population and infrastructure from periodic floods and high water due to storm surges. The causes of failure of levees include overtopping, surface erosion, internal erosion, and slope instability. Overtopping may occur during periods of flooding due to insufficient freeboard. The most problematic situation involves the levee being overtopped by both surge and waves when the surge level exceeds the levee crest elevation with accompanying wave overtopping. Overtopping of levees produces fast-flowing, turbulent water velocities on the landward-side slope that can potentially damage the protective grass covering and expose the underlying soil to erosion. If overtopping continues long enough, the erosion may eventually result in loss of levee crest elevation and possibly breaching of the protective structure. Hence, protecting levees from erosion by surge overflow and wave overtopping is necessary to assure a viable and safe levee system. This book presents a cutting-edge approach to understanding overtopping hydraulics under negative free board of earthen levees, and to the study of levee reinforcing methods. Combining soil erosion test, full-scale laboratory overtopping hydraulics test, and numerical modeling for the turbulent overtopping hydraulics. It provides an analysis that integrates the mechanical and hydraulic processes governing levee overtopping occurrences and engineering approaches to reinforce overtopped levees. Topics covered: surge overflow, wave overtopping and their combination, full-scale hydraulic tests, erosion tests, overtopping hydraulics, overtopping discharge, and turbulent analysis. This is an invaluable resource for graduate students and researchers working on levee design, water resource engineering, hydraulic engineering, and coastal engineering, and for professionals in the field of civil and environmental engineering, and natural hazard analysis.




Earth and Rock-Fill Dams


Book Description

This manual presents fundamental principles underlying the design and construction of earth and rock-fill dams. The general principles presented herein are also applicable to the design and construction of earth levees.







Dam Failure Mechanisms and Risk Assessment


Book Description

This book integrates the physical processes of dam breaching and the mathematical aspects of risk assessment in a concise manner • The first book that introduces the causes, processes and consequences of dam failures • Integrates the physical processes of dam breaching and the mathematical aspects of risk assessment in a concise manner • Emphasizes integrating theory and practice to better demonstrate the application of risk assessment and decision methodologies to real cases • Intends to formulate dam-breaching emergency management steps in a scientific structure




Scour and Erosion


Book Description










Erosion in Geomechanics Applied to Dams and Levees


Book Description

Erosion is the most common cause of failures at earth-dams, dikes and levees, whether through overtopping and overflowing, or internal erosion and piping. This book is dedicated to the phenomenon of internal erosion and piping. It is not intended to be exhaustive on the subject, but brings together some of the latest international research and advances. Emphasis is placed on physical processes, how they can be studied in the laboratory, and how test results can be applied to levees and dams. The results from several research projects in Australia, France, the Netherlands and the United States are covered by the authors. Our aim has been to share our most recent findings with students, researchers and practitioners. Understanding the failure of an earth-dam or a levee by erosion in a unified framework, whether internal erosion or surface erosion, requires continuous research in this field. We hope that the reader will gain knowledge from this book that leads to further progress in the challenging field of the safety of levees and dams. Contents 1. State of The Art on the Likelihood of Internal Erosion of Dams and Levees by Means of Testing, Robin Fell and Jean-Jacques Fry. 2. Contact Erosion, Pierre Philippe, Rémi Beguin and Yves-Henri Faure. 3. Backward Erosion Piping, Vera Van Beek, Adam Bezuijen and Hans Sellmeijer. 4. Concentrated Leak Erosion, Stéphane Bonelli, Robin Fell and Nadia Benahmed. 5. Relationship between the Erosion Properties of Soils and Other Parameters, Robin Fell, Gregory Hanson, Gontran Herrier, Didier Marot and Tony Wahl. About the Authors Stéphane Bonelli is a Research Professor at Irstea (French Environmental Sciences and Technologies Research Institute) in Aix-en-Provence, France. He has over 20 years of teaching and research experience, and has been a member of the ICOLD (International Commission on Large Dams) European Working Group on Internal Erosion since 2005. He has participated in 19 large dam reviews in France (visual inspection, monitoring data analysis and numerical modeling). His current activities include research, teaching and consultancy, focusing on soil erosion and the processes of levee breach.




Safety of Existing Dams


Book Description

Written by civil engineers, dam safety officials, dam owners, geologists, hydraulic engineers, and risk analysts, this handbook is the first cooperative attempt to provide practical solutions to dam problems within the financial constraints faced by dam owners. It provides hands-on information for identifying and remedying common defects in concrete and masonry dams, embankment dams, reservoirs, and related structures. It also includes procedures for monitoring dams and collecting and analyzing data. Case histories demonstrate economical solutions to specific problems.