Physico-chemical Applications of NMR


Book Description

The book is intended to help under- and postgraduate students and young scientists in the correct application of NMR to the solution of physico-chemical problems concerning the study of equilibria in solution. The first part of the book (Chapters 1-3) is a trivium, but should enable a student to design and conduct simple physico-chemical NMR experiments. The following chapters give illustrative material on the physico-chemical applications of NMR of increasing complexity. These chapters include the problem of determination of equilibrium and rate constants in solution, the study of paramagnetism using NMR, the application of Dynamic NMR techniques and relaxation measurements. A multipurpose nonlinear regression program is supplied (on disc for PC) and is referred to throughout the book.




Solid State NMR


Book Description

Solid State NMR A thorough and comprehensive textbook covering the theoretical background, experimental approaches, and major applications of solid-state NMR spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful non-destructive technique capable of providing information about the molecular structure and dynamics of molecules. Alongside solution-state NMR, a well-established technique to study chemical structures and investigate physico-chemical properties of molecules in solutions, solid-state NMR (SSNMR) offers many exciting possibilities for the analysis of solid and soft materials across scientific fields. SSNMR shows unique capabilities for a detailed investigation of structural and dynamic properties of materials over wide space and time ranges. For this reason, and thanks to significant advances in the past several years, the application of SSNMR to materials is rapidly increasing in disciplines such as chemistry, physics, and materials and life sciences. Solid State NMR: Principles, Methods, and Applications offers a systematic introduction to the theory, methodological concepts, and major experimental methods of SSMR spectroscopy. Exploring the unique potential of SSNMR for the structural and dynamic characterization of soft and either amorphous or crystalline solid materials, this comprehensive textbook provides foundational knowledge and recent developments of SSNMR, covering physical and theoretical background, experimental methods, and applications to pharmaceuticals, polymers, inorganic and hybrid materials, liquid crystals, and model membranes. Written by two expert authors to ensure a clear and consistent presentation of the subject, this textbook: Includes a brief introduction to the historical aspects and broad theoretical background of solid-state NMR spectroscopy Provides helpful illustrations to explain the various SSNMR concepts and methods Features accessible descriptive text with self-consistent use of quantum mechanics Covers the experimental aspects of SSNMR spectroscopy and in particular a description of many useful pulse sequences Contains references to relevant literature Solid State NMR: Principles, Methods, and Applications is the ideal textbook for university courses on SSNMR, advanced spectroscopies, and a valuable single-volume reference for spectroscopists, chemists, and researchers in the field of materials.




Applications of NMR Spectroscopy


Book Description

Applications of NMR Spectroscopy is a book series devoted to publishing the latest advances in the applications of nuclear magnetic resonance (NMR) spectroscopy in various fields of organic chemistry, biochemistry, health and agriculture. The fifth volume of the series features several reviews focusing on NMR spectroscopic techniques for identifying natural and synthetic compounds (polymer and peptide characterization, GABA in tinnitus affected mice), medical diagnosis and therapy (gliomas) and food analysis. The spectroscopic methods highlighted in this volume include high resolution proton magnetic resonance spectroscopy and solid state NMR.




Biological NMR Spectroscopy


Book Description

This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.




NMR Spectroscopy in Organic Chemistry


Book Description

In recent years high-resolution nuclear magnetic resonance spec troscopy has found very wide application in organie chemistry in structural and physicochemical investigations and. also in the study of the characteristics of organic compounds which are re lated to the distribution of the electron cloud in the molecules. The vigorous development of this method, which may really be re garded as an independent branch of science, is the result of ex tensive progress in NMR technology, the refinement of its theory, and the accumulation of large amounts of experimental material, which has been correlated by empiricallaws and principles. The literature directly concerned with the NMR method and its applica tion has now grown to such an extent that a complete review of it is practically impossible. Therefore the authors have limited themselves to an examination of only the most important, funda mental, and general investigations. The book consists of six chapters. In the first chapter we have attempted to present the fundamentals of the NMR method in such a way that the reader with little knowledge of the subject will be able to use the method in practical work for investigating simple compounds and solving simple problems. The three subsequent chapters give a deeper analysis of the method, while the last two chapters and the appendix illustrate the various applications of NMR spectroscopy in organic chemistry.




NMR Spectroscopy


Book Description

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.




Applied NMR Spectroscopy for Chemists and Life Scientists


Book Description

From complex structure elucidation to biomolecular interactions - this applicationoriented textbook covers both theory and practice of modern NMR applications. Part one sets the stage with a general description of NMR introducing important parameters such as the chemical shift and scalar or dipolar couplings. Part two describes the theory behind NMR, providing a profound understanding of the involved spin physics, deliberately kept shorter than in other NMR textbooks, and without a rigorous mathematical treatment of all the physico-chemical computations. Part three discusses technical and practical aspects of how to use NMR. Important phenomena such as relaxation, exchange, or the nuclear Overhauser effects and the methods of modern NMR spectroscopy including multidimensional experiments, solid state NMR, and the measurement of molecular interactions are the subject of part four. The final part explains the use of NMR for the structure determination of selected classes of complex biomolecules, from steroids to peptides or proteins, nucleic acids, and carbohydrates. For chemists as well as users of NMR technology in the biological sciences.




Multidimensional Solid-State NMR and Polymers


Book Description

NMR spectroscopy is the most valuable and versatile analytical tool in chemistry. While excellent monographs exist on high-resolution NMR in liquids and solids, this is the first book to address multidimensional solid-state NMR. Multidimensional techniques enable researchers to obtain detailed information about the structure, dynamics, orientation, and phase separation of solids, which provides the basis of a better understanding of materials properties on the molecular level.Dramatic progress-much of it pioneered by the authors-has been achieved in this area, especially in synthetic polymers. Solid-state NMR now favorably competes with well-established techniques, such as light, x-ray, or neutron scattering, electron microscopy, and dielectric and mechanical relaxation.The application of multidimensional solid-state NMR inevitably involves use of concepts from different fields of science. This book also provides the first comprehensive treatment of both the new experimental techniques and the theoretical concepts needed in more complex data analysis. The text addresses spectroscopists and polymer scientists by treating the subject on different levels; descriptive, technical, and mathematical approaches are used when appropriate. It presents an overview of new developments with numerous experimental examples and illustrations, which will appeal to readers interested in both the information content as well as the potential of solid-state NMR. The book also contains many previously unpublished details that will be appreciated by those who want to perform the experiments. The techniques described are applicable not only to the study of synthetic polymers but to numerous problems in solid-state physics, chemistry, materials science, and biophysics. - Presents original theories and new perspectives on scattering techniques - Provides a systematic treatment of the whole subject - Gives readers access to previously unpublished material - Includes extensive illustrations




Quantities, Units and Symbols in Physical Chemistry


Book Description

Prepared by the IUPAC Physical Chemistry Division this definitive manual, now in its third edition, is designed to improve the exchange of scientific information among the readers in different disciplines and across different nations. This book has been systematically brought up to date and new sections added to reflect the increasing volume of scientific literature and terminology and expressions being used. The Third Edition reflects the experience of the contributors with the previous editions and the comments and feedback have been integrated into this essential resource. This edition has been compiled in machine-readable form and will be available online.




High Magnetic Field Science and Its Application in the United States


Book Description

The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.