Physics Experiments with Arduino and Smartphones


Book Description

This book on the use of Arduino and Smartphones in physics experiments, with a focus on mechanics, introduces various techniques by way of examples. The main aim is to teach students how to take meaningful measurements and how to interpret them. Each topic is introduced by an experiment. Those at the beginning of the book are rather simple to build and analyze. As the lessons proceed, the experiments become more refined and new techniques are introduced. Rather than providing recipes to be adopted while taking measurements, the need for new concepts is raised by observing the results of an experiment. A formal justification is given only after a concept has been introduced experimentally. The discussion extends beyond the taking of measurements to their meaning in terms of physics, the importance of what is learned from the laws that are derived, and their limits. Stress is placed on the importance of careful design of experiments as to reduce systematic errors and on good practices to avoid common mistakes. Data are always analyzed using computer software. C-like structures are introduced in teaching how to program Arduino, while data collection and analysis is done using Python. Several methods of graphical representation of data are used.




Makers at School, Educational Robotics and Innovative Learning Environments


Book Description

This open access book contains observations, outlines, and analyses of educational robotics methodologies and activities, and developments in the field of educational robotics emerging from the findings presented at FabLearn Italy 2019, the international conference that brought together researchers, teachers, educators and practitioners to discuss the principles of Making and educational robotics in formal, non-formal and informal education. The editors’ analysis of these extended versions of papers presented at FabLearn Italy 2019 highlight the latest findings on learning models based on Making and educational robotics. The authors investigate how innovative educational tools and methodologies can support a novel, more effective and more inclusive learner-centered approach to education. The following key topics are the focus of discussion: Makerspaces and Fab Labs in schools, a maker approach to teaching and learning; laboratory teaching and the maker approach, models, methods and instruments; curricular and non-curricular robotics in formal, non-formal and informal education; social and assistive robotics in education; the effect of innovative spaces and learning environments on the innovation of teaching, good practices and pilot projects.




Arduino + Android Projects for the Evil Genius: Control Arduino with Your Smartphone or Tablet


Book Description

TEAM ARDUINO UP WITH ANDROID FOR SOME MISCHIEVOUS FUN! Filled with practical, do-it-yourself gadgets, Arduino + Android Projects for the Evil Genius shows you how to create Arduino devices and control them with Android smartphones and tablets. Easy-to-find equipment and components are used for all the projects in the book. This wickedly inventive guide covers the Android Open Application Development Kit (ADK) and USB interface and explains how to use them with the basic Arduino platform. Methods of communication between Android and Arduino that don't require the ADK--including sound, Bluetooth, and WiFi/Ethernet are also discussed. An Arduino ADK programming tutorial helps you get started right away. Arduino + Android Projects for the Evil Genius: Contains step-by-step instructions and helpful illustrations Provides tips for customizing the projects Covers the underlying principles behind the projects Removes the frustration factor--all required parts are listed Provides all source code on the book's website Build these and other devious devices: Bluetooth robot Android Geiger counter Android-controlled light show TV remote Temperature logger Ultrasonic range finder Home automation controller Remote power and lighting control Smart thermostat RFID door lock Signaling flags Delay timer




Building Arduino Projects for the Internet of Things


Book Description

Gain a strong foundation of Arduino-based device development, from which you can go in any direction according to your specific development needs and desires. You'll build Arduino-powered devices for everyday use, and then connect those devices to the Internet. You'll be introduced to the building blocks of IoT, and then deploy those principles to by building a variety of useful projects. Projects in the books gradually introduce the reader to key topics such as internet connectivity with Arduino, common IoT protocols, custom web visualization, and Android apps that receive sensor data on-demand and in realtime. IoT device enthusiasts of all ages will want this book by their side when developing Android-based devices. If you're one of the many who have decided to build your own Arduino-powered devices for IoT applications, then Building Arduino Projects for the Internet of Things is exactly what you need. This book is your single resource--a guidebook for the eager-to-learn Arduino enthusiast--that teaches logically, methodically, and practically how the Arduino works and what you can build with it. Written by a software developer and solution architect who got tired of hunting and gathering various lessons for Arduino development as he taught himself all about the topic. For Arduino enthusiasts, this book not only opens up the world of IoT applications, you will also learn many techniques that likely would not be obvious if not for experience with such a diverse group of applications What You'll Learn Create an Arduino circuit that senses temperature Publish data collected from an Arduino to a server and to an MQTT broker Set up channels in Xively Using Node-RED to define complex flows Publish data visualization in a web app Report motion-sensor data through a mobile app Create a remote control for house lights Set up an app in IBM Bluematrix Who This Book Is For IoT device enthusiasts of all ages will want this book by their side when developing Android-based devices.




Exploring Arduino


Book Description

The bestselling beginner Arduino guide, updated with new projects! Exploring Arduino makes electrical engineering and embedded software accessible. Learn step by step everything you need to know about electrical engineering, programming, and human-computer interaction through a series of increasingly complex projects. Arduino guru Jeremy Blum walks you through each build, providing code snippets and schematics that will remain useful for future projects. Projects are accompanied by downloadable source code, tips and tricks, and video tutorials to help you master Arduino. You'll gain the skills you need to develop your own microcontroller projects! This new 2nd edition has been updated to cover the rapidly-expanding Arduino ecosystem, and includes new full-color graphics for easier reference. Servo motors and stepper motors are covered in richer detail, and you'll find more excerpts about technical details behind the topics covered in the book. Wireless connectivity and the Internet-of-Things are now more prominently featured in the advanced projects to reflect Arduino's growing capabilities. You'll learn how Arduino compares to its competition, and how to determine which board is right for your project. If you're ready to start creating, this book is your ultimate guide! Get up to date on the evolving Arduino hardware, software, and capabilities Build projects that interface with other devices—wirelessly! Learn the basics of electrical engineering and programming Access downloadable materials and source code for every project Whether you're a first-timer just starting out in electronics, or a pro looking to mock-up more complex builds, Arduino is a fantastic tool for building a variety of devices. This book offers a comprehensive tour of the hardware itself, plus in-depth introduction to the various peripherals, tools, and techniques used to turn your little Arduino device into something useful, artistic, and educational. Exploring Arduino is your roadmap to adventure—start your journey today!




User Science and Engineering


Book Description

This book constitutes the refereed proceedings of the 5th International Conference on User Science and Engineering, i-USEr 2018, held in Puchong, Malaysia, in August 2018. The 32 papers accepted for i-USEr 2018 were selected from 72 submissions with a thorough double-blind review process. The selected papers illustrate how HCI is inclusive and omnipresent within the domains of informatics, Internet of Things, Quality of Life, and others. They are organized in the following topical sections: design, UX and usability; HCI and underserved; technology and adoption; human centered computing; HCI and IT infrastructure; and HCI and analytics.




Innovations in Open and Flexible Education


Book Description

This book covers a broad range of innovations in education, such as flipped classrooms, the educational use of social media, mobile learning, educational resources and massive open online courses, as well as theoretical discussions and practical applications in the use of augmented reality and educational technology to improve student engagement and pave the way for students’ future studies and careers. The case studies and practical applications presented here illustrate the effectiveness of new modes of education in which the latest technologies and innovations are widely used in the global context. Accordingly, the book can help develop readers’ awareness of the potential these innovations hold, thus expanding their expertise and stimulating critical thinking as to how new technologies have made learning and teaching easier in various educational settings.




The Ten Most Beautiful Experiments


Book Description

A dazzling, irresistible collection of the ten most groundbreaking and beautiful experiments in scientific history. With the attention to detail of a historian and the storytelling ability of a novelist, New York Times science writer George Johnson celebrates these groundbreaking experiments and re-creates a time when the world seemed filled with mysterious forces and scientists were in awe of light, electricity, and the human body. Here, we see Galileo staring down gravity, Newton breaking apart light, and Pavlov studying his now famous dogs. This is science in its most creative, hands-on form, when ingenuity of the mind is the most useful tool in the lab and the rewards of a well-considered experiment are on exquisite display.




Practical Arduino


Book Description

Create your own Arduino-based designs, gain in-depth knowledge of the architecture of Arduino, and learn the user-friendly Arduino language all in the context of practical projects that you can build yourself at home. Get hands-on experience using a variety of projects and recipes for everything from home automation to test equipment. Arduino has taken off as an incredibly popular building block among ubicomp (ubiquitous computing) enthusiasts, robotics hobbyists, and DIY home automation developers. Authors Jonathan Oxer and Hugh Blemings provide detailed instructions for building a wide range of both practical and fun Arduino-related projects, covering areas such as hobbies, automotive, communications, home automation, and instrumentation. Take Arduino beyond "blink" to a wide variety of projects from simple to challenging Hands-on recipes for everything from home automation to interfacing with your car engine management system Explanations of techniques and references to handy resources for ubiquitous computing projects Supplementary material includes a circuit schematic reference, introductions to a range of electronic engineering principles and general hints & tips. These combine with the projects themselves to make Practical Arduino: Cool Projects for Open Source Hardware an invaluable reference for Arduino users of all levels. You'll learn a wide variety of techniques that can be applied to your own projects.




Emerging Issues in Smart Learning


Book Description

This book provides an archival forum for researchers, academics, practitioners and industry professionals interested and/or engaged in the reform of the ways of teaching and learning through advancing current learning environments towards smart learning environments. The contributions of this book are submitted to the International Conference on Smart Learning Environments (ICSLE 2014). The focus of this proceeding is on the interplay of pedagogy, technology and their fusion towards the advancement of smart learning environments. Various components of this interplay include but are not limited to: Pedagogy- learning paradigms, assessment paradigms, social factors, policy; Technology- emerging technologies, innovative uses of mature technologies, adoption, usability, standards and emerging/new technological paradigms (open educational resources, cloud computing, etc.)