Physics of Liquid Matter


Book Description

This book offers a didactic and a self-contained treatment of the physics of liquid and flowing matter with a statistical mechanics approach. Experimental and theoretical methods that were developed to study fluids are now frequently applied to a number of more complex systems generically referred to as soft matter. As for simple liquids, also for complex fluids it is important to understand how their macroscopic behavior is determined by the interactions between the component units. Moreover, in recent years new and relevant insights have emerged from the study of anomalous phases and metastable states of matter. In addition to the traditional topics concerning fluids in normal conditions, the authors of this book discuss recent developments in the field of disordered systems in condensed and soft matter. In particular they emphasize computer simulation techniques that are used in the study of soft matter and the theories and study of slow glassy dynamics. For these reasons the book includes a specific chapter about metastability, supercooled liquids and glass transition. The book is written for graduate students and active researchers in the field.




The Physics of Liquid Water


Book Description

Unraveling the mystery of the negative thermal expansion of liquid water has been a challenge for scientists for centuries. Various theories have been proposed so far, but none has been able to solve this mystery. Since the thermodynamic properties of matter are determined by the interaction between particles, the mystery can be solved fundamentally if the thermodynamic physical quantities using the laws of thermodynamics and statistical mechanics are determined, the experimental results are reproduced, and the phenomena in relation to the shape of the interaction between particles are elucidated. In this sense, this book has fundamentally unraveled this mystery. In addition, it discusses the mysteries of isothermal compressibility, structural diversity, as well as liquefaction and boiling points of water in relation to the shape of the interaction between particles. It carefully explains the analysis and calculation methods so that they can be easily understood by the readers.




Gases, Liquids and Solids


Book Description

This is now the third edition of a well established and highly successful undergraduate text. The content of the second edition has been reworked and added to where necessary, and completely new material has also been included. There are new sections on amorphous solids and liquid crystals, and completely new chapters on colloids and polymers. Using unsophisticated mathematics and simple models, Professor Tabor leads the reader skilfully and systematically from the basic physics of interatomic and intermolecular forces, temperature, heat and thermodynamics, to a coherent understanding of the bulk properties of gases, liquids and solids. The introductory material on intermolecular forces and on heat and thermodynamics is followed by several chapters dealing with the properties of ideal and real gases, both at an elementary and at a more sophisticated level. The mechanical, thermal and electrical properties of solids are considered next, before an examination of the liquid state. The author continues with chapters on colloids and polymers, and ends with a discussion of the dielectric and magnetic properties of matter in terms of simple atomic models. The abiding theme is that all these macroscopic material properties can be understood as resulting from the competition between thermal energy and intermolecular or interatomic forces. This is a lucid textbook which will continue to provide students of physics and chemistry with a comprehensive and integrated view of the properties of matter in all its many fascinating forms.







Condensed Matter Physics


Book Description

Derived from lectures at the University of Freiburg, this textbook introduces solid-state physics as well as the physics of liquids, liquid crystals and polymers. The five chapters deal with the key characteristics of condensed matter: structures, susceptibilities, molecular fields, currents, and dynamics. The author strives to present and explain coherently the terms and concepts associated with the main properties and characteristics of condensed matter, while minimizing attention to extraneous details. As a result, this text provides the firm and broad basis of understanding that readers require for further study and research.




Physics of Liquid Matter: Modern Problems


Book Description

These proceedings comprise invited and contributed papers presented at PLMMP-2014, addressing modern problems in the fields of liquids, solutions and confined systems, critical phenomena, as well as colloidal and biological systems. The book focuses on state-of-the-art developments in contemporary physics of liquid matter. The papers presented here are organized into four parts: (i) structure of liquids in confined systems, (ii) phase transitions, supercritical liquids and glasses, (iii) colloids, and (iv) medical and biological aspects and cover the most recent developments in the broader field of liquid state including interdisciplinary problems.




Modern Problems of the Physics of Liquid Systems


Book Description

This book presents a collection of selected reviews from PLMMP 2018 that address modern problems in the fields of liquids, solutions and confined systems, critical phenomena, as well as colloidal and biological systems. The papers focus on state-of-the-art developments in the contemporary physics of liquid matter, and are divided into four parts: (i) water and water systems, (ii) physical–chemical properties of liquid systems, (iii) aggregation in liquid systems, and (iv) biological aspects of liquid systems, irradiation influences on liquid systems. Taken together, they cover the latest developments in the broader field of liquid states, including interdisciplinary problems.




The Liquid and Supercritical Fluid States of Matter


Book Description

This book addresses graduate students and researchers wishing to better understand the liquid and supercritical fluid states of matter, presenting a single cohesive treatment of the liquid and supercritical fluid states using the gas-like and solid-like approaches. Bringing this information together into one comprehensive text, this book outlines how our understanding of the liquid and supercritical fluid states is applied and explores the use of supercritical fluids in daily life and in research, for example in power generation, and their existence in planetary interiors. Presents a single coherent treatment of the key knowledge about the liquid and supercritical fluid states Provides comprehensive survey of key fluid properties from the latest experiments and applies our theoretical knowledge to understand the behaviour of these real fluids Explores the consequences of recent advances in the field on our understanding in industry, nature, and in interdisciplinary research, including planetary science




Physics of Liquid Matter: Modern Problems


Book Description

These proceedings comprise invited and contributed papers presented at PLMMP-2014, addressing modern problems in the fields of liquids, solutions and confined systems, critical phenomena, as well as colloidal and biological systems. The book focuses on state-of-the-art developments in contemporary physics of liquid matter. The papers presented here are organized into four parts: (i) structure of liquids in confined systems, (ii) phase transitions, supercritical liquids and glasses, (iii) colloids, and (iv) medical and biological aspects and cover the most recent developments in the broader field of liquid state including interdisciplinary problems.




Solids, Liquids, Gases, and Plasma


Book Description

Explore physics in this early introduction to the states of matter, starring a goofy dog and his all-too-human family. Zippy art and clear explanations introduce the basic characteristics of four states of matter and how they change from one state to another. Totally up-to-date, this book for elementary school children includes plasma, now covered in all curricula. Straightforward text presents the facts and Raff's infographic illustrations demonstrate the science and tell a humorous story. There are hands-on activities, such as using a chocolate bar to demonstrate material consistency and using a balloon to prove gases have weight, to reinforce the learning. A glossary defines density, plasma, vapor, and more essential terms.