Physics of Long-range Interacting Systems


Book Description

This book deals with an important class of many-body systems: those where the interaction potential decays slowly for large inter-particle distances; in particular, systems where the decay is slower than the inverse inter-particle distance raised to the dimension of the embedding space. Gravitational and Coulomb interactions are the most prominent examples, however it has become clear that long-range interactions are more common than previously thought. A satisfactory understanding of properties, generally considered as oddities only a couple of decades ago, has now been reached: ensemble inequivalence, negative specific heat, negative susceptibility, ergodicity breaking, out-of-equilibrium quasi-stationary-states, anomalous diffusion. The book, intended for Master and PhD students, tries to gradually acquaint the reader with the subject. The first two parts describe the theoretical and computational instruments needed to address the study of both equilibrium and dynamical properties of systems subject to long-range forces. The third part of the book is devoted to applications of such techniques to the most relevant examples of long-range systems.




Dynamics and Thermodynamics of Systems with Long Range Interactions


Book Description

Properties of systems with long range interactions are still poorly understood despite being of importance in most areas of physics. The present volume introduces and reviews the effort of constructing a coherent thermodynamic treatment of such systems by combining tools from statistical mechanics with concepts and methods from dynamical systems. Analogies and differences between various systems are examined by considering a large range of applications, with emphasis on Bose--Einstein condensates. Written as a set of tutorial reviews, the book will be useful for both the experienced researcher as well as the nonexpert scientist or postgraduate student.




Long-Range Interacting Systems


Book Description

This book collects lectures and seminars given at the Les Houches Summer School 2008 on Long-Range Interacting Systems. It reviews state-of-the-art developments in this field, looking at problems of probability, transport theory, statistical mechanics, condensed matter physics, astrophysics and cosmology, physics of plasmas, and hydrodynamics.




Long-range Interactions, Stochasticity and Fractional Dynamics


Book Description

In memory of Dr. George Zaslavsky, "Long-range Interactions, Stochasticity and Fractional Dynamics" covers the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico.




Memorial Volume On Abdus Salam's 90th Birthday


Book Description

'This book presents a timely set of academic and intellectual views on Salam’s scientific passion, contribution and personality, and will be of great interest to academics in the fields of particle physics, high energy physics and scientific history of the developing world.'Contemporary PhysicsIn honor of one of the most prolific and exciting scientists of the second half of the last century, a memorial meeting was organized by the Institute of Advanced Studies at Nanyang Technological University for Professor Abdus Salam's 90th Birthday in January 2016.Salam believed that 'scientific thought is the common heritage of all mankind' and that the developing world should play its part, not merely by importing technology but by being the arbiter of its own scientific destiny. That belief saw him rise from humble beginnings in a village in Pakistan to become one of the world's most original and influential particle physicists, culminating in the 1979 Nobel Prize (shared with Glashow and Weinberg) for contributions to electroweak unification, which forms an integral part of the Standard Model.The book collected the papers presented at this memorable event which saw many distinguished scientists participating as speakers to reflect on Prof Salam's great passion for the science and achievements.




Issues in General Physics Research: 2012 Edition


Book Description

Issues in General Physics Research / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Physics Research. The editors have built Issues in General Physics Research: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Physics Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General Physics Research: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Thermodynamics and Statistical Mechanics of Small Systems


Book Description

This book is a printed edition of the Special Issue "Thermodynamics and Statistical Mechanics of Small Systems" that was published in Entropy




Interacting Electrons and Quantum Magnetism


Book Description

In the excitement and rapid pace of developments, writing pedagogical texts has low priority for most researchers. However, in transforming my lecture l notes into this book, I found a personal benefit: the organization of what I understand in a (hopefully simple) logical sequence. Very little in this text is my original contribution. Most of the knowledge was collected from the research literature. Some was acquired by conversations with colleagues; a kind of physics oral tradition passed between disciples of a similar faith. For many years, diagramatic perturbation theory has been the major theoretical tool for treating interactions in metals, semiconductors, itiner ant magnets, and superconductors. It is in essence a weak coupling expan sion about free quasiparticles. Many experimental discoveries during the last decade, including heavy fermions, fractional quantum Hall effect, high temperature superconductivity, and quantum spin chains, are not readily accessible from the weak coupling point of view. Therefore, recent years have seen vigorous development of alternative, nonperturbative tools for handling strong electron-electron interactions. I concentrate on two basic paradigms of strongly interacting (or con strained) quantum systems: the Hubbard model and the Heisenberg model. These models are vehicles for fundamental concepts, such as effective Ha miltonians, variational ground states, spontaneous symmetry breaking, and quantum disorder. In addition, they are used as test grounds for various nonperturbative approximation schemes that have found applications in diverse areas of theoretical physics.




Mathematical Physics in One Dimension


Book Description

Mathematical Physics in One Dimension: Exactly Soluble Models of Interacting Particles covers problems of mathematical physics with one-dimensional analogs. The book discusses classical statistical mechanics and phase transitions; the disordered chain of harmonic oscillators; and electron energy bands in ordered and disordered crystals. The text also describes the many-fermion problem; the theory of the interacting boson gas; the theory of the antiferromagnetic linear chains; and the time-dependent phenomena of many-body systems (i.e., classical or quantum-mechanical dynamics). Physicists and mathematicians will find the book invaluable.




Relativistic Kinetic Theory


Book Description

This book presents fundamentals, equations, and methods of solutions of relativistic kinetic theory, with applications in astrophysics and cosmology.