Physics of the Life Sciences


Book Description

Each chapter has three types of learning aides for students: open-ended questions, multiple-choice questions, and quantitative problems. There is an average of about 50 per chapter. There are also a number of worked examples in the chapters, averaging over 5 per chapter, and almost 600 photos and line drawings.




Physics for the Life Sciences


Book Description

The second edition of Physics for the Life Sciences brings the beauty of physics to life. Taking an algebra-based approach with the selective use of calculus, the second edition provides a concise approach to basic physics concepts using a fresh layout, consistent and student-tested art program, extensive use of conceptual examples, analytical problems, and instructive and engaging case studies.




Introduction to Biological Physics for the Health and Life Sciences


Book Description

This book aims to demystify fundamental biophysics for students in the health and biosciences required to study physics and to understand the mechanistic behaviour of biosystems. The text is well supplemented by worked conceptual examples that will constitute the main source for the students, while combining conceptual examples and practice problems with more quantitative examples and recent technological advances.




University Physics for the Life Sciences


Book Description

For courses in university physics for the life sciences. Targeting university physics for life sciences courses University Physics for the Life Sciences helps premed students understand the connection between physics and biology. By blending light calculus-based physics with biology and consistently presenting the medical application, students see the relevance and real-world application of physics to their career. Informed by Physics Education Research (PER), Knight/Jones/Field and contributor Catherine Crouch prepare life-science students for success on the MCAT by showing the connections between true biology and physics principles. Reach every student with Mastering Physics Mastering(R) empowers you to personalize learning and reach every student. This flexible digital platform combines trusted content with customizable features so you can teach your course your way. And with digital tools and assessments, students become active participants in their learning, leading to better results. Learn more about Mastering Physics. Plus, give students anytime, anywhere access with Pearson eText Pearson eText is an easy-to-use digital textbook available within Mastering. It lets students read, highlight, take notes, and review key vocabulary all in one place, even when offline. For instructors not using Mastering, Pearson eText can also be adopted on its own as the main course material. Learn more about Pearson eText or contact your rep for purchase options.




Biophysics


Book Description

This comprehensive and extensively classroom-tested biophysics textbook is a complete introduction to the physical principles underlying biological processes and their applications to the life sciences and medicine. The foundations of natural processes are placed on a firm footing before showing how their consequences can be explored in a wide range of biosystems. The goal is to develop the readers’ intuition, understanding, and facility for creative analysis that are frequently required to grapple with problems involving complex living organisms. Topics cover all scales, encompassing the application of statics, fluid dynamics, acoustics, electromagnetism, light, radiation physics, thermodynamics, statistical physics, quantum biophysics, and theories of information, ordering, and evolutionary optimization to biological processes and bio-relevant technological implementations. Sound modeling principles are emphasized throughout, placing all the concepts within a rigorous framework. With numerous worked examples and exercises to test and enhance the reader’s understanding, this book can be used as a textbook for physics graduate students and as a supplementary text for a range of premedical, biomedical, and biophysics courses at the undergraduate and graduate levels. It will also be a useful reference for biologists, physicists, medical researchers, and medical device engineers who want to work from first principles.




Introductory Physics for Biological Scientists


Book Description

An introduction to the fundamental physical principles related to the study of biological phenomena, structured around relevant biological examples.




Physics in the Life Sciences: Physics for Life Science Students


Book Description

This book provides undergraduate life science students taking a general physics class with physics that is directly relevant to the life sciences. It develops the basic concepts of physics in a manner that they can be directly used to explain the 'engineering' of living organisms, from the operation of the skeleton to the interaction between DNA and proteins. Topics such as the physics of statics, elasticity, fluids, and physical chemistry that are rich in life-science applications are emphasized. A clear understanding of this material should provide students with a solid foundation for future biochemistry, molecular biology, and physiology students. It should prepare life science students for tests, such as the MCAT exam.




Building Blocks in Life Science


Book Description

Provides exceptional insights and clarity to patterns of order in living things, including the promise of healing and new birth in Christ.




The Cambridge Companion to Science Fiction


Book Description

Table of contents




Research at the Intersection of the Physical and Life Sciences


Book Description

Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies.