Physics of the Lorentz Group


Book Description

This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.




Physics of the Lorentz Group


Book Description

This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.




The Rotation and Lorentz Groups and Their Representations for Physicists


Book Description

Here is a detailed, self-contained work on the rotation and Lorentz groups and their representations. Treatment of the structure of the groups is elaborate and includes many new results only recently published in journals. The chapter on linear vector spaces is exhaustive yet clear, and the book highlights the fact that all results of the orthosynchronous proper Lorentz group may be obtained from those of the rotation group via complex quaternions. The approach is unified, and special properties and exceptional cases are addressed.




Representations of the Rotation and Lorentz Groups and Their Applications


Book Description

This monograph on the description and study of representations of the rotation group of three-dimensional space and of the Lorentz group features advanced topics and techniques crucial to many areas of modern theoretical physics. Prerequisites include a familiarity with the differential and integral calculus of several variables and the fundamentals of linear algebra. Suitable for advanced undergraduate and graduate students in mathematical physics, the book is also designed for mathematicians studying the representations of Lie groups, for whom it can serve as an introduction to the general theory of representation. The treatment encompasses all the basic material of the theory of representations used in quantum mechanics. The two-part approach begins with representations of the group of rotations of three-dimensional space, analyzing the rotation group and its representations. The second part, covering representations of the Lorentz group, includes an exploration of relativistic-invariant equations. The text concludes with three helpful supplements and a bibliography.




Theory and Applications of the Poincaré Group


Book Description

Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is important to realize that the underlying scientific language for both disciplines is that of group theory. The role of group theory in quantum mechanics is well known. The same is true for special relativity. Therefore, the most effective approach to the problem of unifying these two important theories is to develop a group theory which can accommodate both special relativity and quantum mechanics. As is well known, Eugene P. Wigner is one of the pioneers in developing group theoretical approaches to relativistic quantum mechanics. His 1939 paper on the inhomogeneous Lorentz group laid the foundation for this important research line. It is generally agreed that this paper was somewhat ahead of its time in 1939, and that contemporary physicists must continue to make real efforts to appreciate fully the content of this classic work.




Linear Representations of the Lorentz Group


Book Description

Linear Representations of the Lorentz Group is a systematic exposition of the theory of linear representations of the proper Lorentz group and the complete Lorentz group. This book consists of four chapters. The first two chapters deal with the basic material on the three-dimensional rotation group, on the complete Lorentz group and the proper Lorentz group, as well as the theory of representations of the three-dimensional rotation group. These chapters also provide the necessary basic information from the general theory of group representations. The third chapter is devoted to the representations of the proper Lorentz group and the complete Lorentz group, while the fourth chapter examines the theory of invariant equations. This book will prove useful to mathematicians and students.




Relativity, Groups, Particles


Book Description

This textbook bridges the gap between the level of introductory courses on mechanics and electrodynamics and the level of application in high energy physics and quantum field theory. After explaining the postulates that lead to the Lorentz transformation and after going through the main points special relativity has to make in classical mechanics and electrodynamics, the authors gradually lead the reader up to a more abstract point of view on relativistic symmetry - illustrated by physical examples - until finally motivating and developing Wigner's classification of the unitary irreducible representations of the inhomogeneous Lorentz group. Numerous historical and mathematical asides contribute to the conceptual clarification.




Group Theory and General Relativity


Book Description

This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory. There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups -- particularly the Lorentz and the SL(2, C) groups -- to the theory of general relativity. Each chapter is concluded with a set of problems. The topics covered range from the fundamentals of general relativity theory, its formulation as an SL(2, C) gauge theory, to exact solutions of the Einstein gravitational field equations. The important Bondi-Metzner-Sachs group, and its representations, conclude the book The entire book is self-contained in both group theory and general relativity theory, and no prior knowledge of either is assumed. The subject of this book constitutes a relevant link between field theoreticians and general relativity theoreticians, who usually work rather independently of each other. The treatise is highly topical and of real interest to theoretical physicists, general relativists and applied mathematicians. It is invaluable to graduate students and research workers in quantum field theory, general relativity and elementary particle theory.




Group Theory in a Nutshell for Physicists


Book Description

A concise, modern textbook on group theory written especially for physicists Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)




Phase Space Picture Of Quantum Mechanics: Group Theoretical Approach


Book Description

This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schrödinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.