Plant Cytogenetics, Third Edition


Book Description

Cytogenetics plays an important role in understanding the chromosomal and genetic architecture of plant species. Plant Cytogenetics, Third Edition follows the tradition of its predecessors presenting theoretical and practical aspects of plant cytogenetics. Chapters describe correct handling of plant chromosomes, methods in plant cytogenetics, cell division, reproduction methods, chromosome nomenclature, karyotype analysis, chromosomal aberrations, genome analysis, transgenic crops, and cytogenetics in plant breeding. This new edition begins with a brief introduction on the historical aspect of cytogenetics and flows directly into handling of plant chromosomes by classical and modern cytological techniques, classical Mendelian Genetics, brief description of cell division, and chromosome identification by karyotype analysis. The comprehension of cytogenetics is incomplete without information on the role of aneuploidy in associating a gene on a particular chromosome, and the book covers these methodologies as a primary topic. Covering classical to modern cytogenetics, the book presents to the reader the crucial role of cytogenetics in improving crops.




Plant Cytogenetics


Book Description

This reference book provides information on plant cytogenetics for students, instructors, and researchers. Topics covered by international experts include classical cytogenetics of plant genomes; plant chromosome structure; functional, molecular cytology; and genome dynamics. In addition, chapters are included on several methods in plant cytogenetics, informatics, and even laboratory exercises for aspiring or practiced instructors. The book provides a unique combination of historical and modern subject matter, revealing the central role of plant cytogenetics in plant genetics and genomics as currently practiced. This breadth of coverage, together with the inclusion of methods and instruction, is intended to convey a deep and useful appreciation for plant cytogenetics. We hope it will inform and inspire students, researchers, and teachers to continue to employ plant cytogenetics to address fundamental questions about the cytology of plant chromosomes and genomes for years to come. Hank W. Bass is a Professor in the Department of Biological Science at Florida State University. James A. Birchler is a Professor in the Division of Biological Sciences at the University of Missouri.




Practical Manual on Plant Cytogenetics


Book Description

Earlier books on the handling of plant chromosomes have not included many of the innovations in cytological techniques for many important crops that have become available in recent years, including information on associating genes with chromosomes. The aim of this book is to compile all the plant cytogenetic techniques, previously published in earlier books, into a laboratory manual. The first part of the book describes standard cytological techniques that are routinely used by students. The second part covers methods used for specific crops for which common cytological methods do not work satisfactorily. The third part discusses cytogenetic techniques (cytology and genetics) for physically locating genes on specific chromosomes. This novel book will be highly useful to students, teachers, and researchers as it is a convenient and comprehensive reference for all plant cytogenetic techniques and protocols.




Cytogenetics in Plant Breeding


Book Description

An introductory discussion of basic chromosome structure and function preceeds the main text on the application of cytogenetic approaches to the analysis of the manipulation of both the genetic make-up and the genetic transmission system of plant breeding material. Analysis using light and electron microscopy, segregations and molecular techniques, yields information for assessing the material before and after manipulation. Much attention is given to quantitative methods. Manipulation not only involves the construction of specific genotypes, but also chromosomal transmission systems. Although analysis and manipulation in the somatic cycle are considered, the focus is on the generative cycle, with emphasis on analysis and subsequent segregation of specifically constructed material. The book is intended for plant breeders and other scientists interested in the analysis and manipulation of breeding material at the chromosomal level. Comparisons with molecular and cell biological approaches are made, and the potential of the various methods is evaluated.




Plant Cytogenetics


Book Description

"This volume covers a range of methods used in plant cytogenetics, beginning with basic analysis of chromosomes and visualizing gene locations, to manipulating and dissecting chromosomes, and then focusing on less understood features of chromosomes such as recombination initiation sites and epigenomic marks. The methods described in Plant Cytogenetics: Methods and Protocols build on each other and provide, those new to the field, with a comprehensive platform to support their research endeavours, while also introducing advanced techniques to experienced researchers. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and thorough, Plant Cytogenetics: Methods and Protocols, is a valuable resource for anyone who is interested in the diverse and wonderfully complex field of cytogenetics."--OCLC.




Dictionary of Plant Breeding


Book Description

One of the oldest scientific traditions, plant breeding began in Neolithic times with methods as simple as saving the seeds of desirable plants and sowing them later. It was not until the re-encounter with Mendel’s discoveries thousands of years later, the genetic basis of breeding was understood. Developments following have provided further insight into how genes acting alone or in concert with other genes and the environment, result in a particular phenotype. From Abaxial to Zymogram, the third edition of Dictionary of Plant Breeding contains clear and useful definitions of the terms associated with plant breeding and related scientific/technological disciplines. It defines jargon; provides helpful tables, examples, and breeding schemes; and includes a list of crop plants with salient details. Packed with data and organized to make that data easy to access, this revised and expanded reference provides comprehensive coverage of the latest discoveries in cytogenetics, molecular genetics, marker-assisted selection, experimental gene transfer, CRISPR technology, seed sciences, crop physiology, and genetically modified crops. Features: Provides a comprehensive list of technical terms used in plant breeding Explores the historical development of crop improvement Discusses applications of molecular genetics and biotechnology Includes numerous figures, drawings, tables, and schemes supplementing the glossary A complex subject, plant breeding draws from many scientific and technological disciplines, often making it difficult to know the precise meanings of many terms and to accurately interpret specific concepts. As in the previous editions, this dictionary unifies concepts by including the specific terms of plant breeding and terms that are adjusted from other disciplines. Drawing on Rolf Schlegel’s 50 years of experience, the book provides an encyclopedic list of commonly used technical terms that reflect the latest developments in the field.




Cytogenetics


Book Description

Since 1961 the author has taught a course in Cytogenetics at Montana State University. Undergraduate and graduate stu dents of Biology, Chemistry, Microbiology, Animal and Range Science, Plant and Soil Science, Plant Pathology and Veterinary Science are enrolled. Therefore, the subject matter has been pre sented in an integrated way to correlate it with these diverse disciplines. This book has been prepared as a text for this course. The most recent Cytogenetics text was published in 1972, and rapidly developing research in this field makes a new one urgently needed. This book includes many aspects of Cytogenetics and related fields and is written for the college student as well as for the researcher. It is recommended that the student should have taken preparatory courses in Principles of Genetics and Cytol ogy. The content is more than is usually taught during one quar ter of an academic year, thus allowing an instructor to choose what he or she would like to present to a class. This approach also allows the researcher to obtain a broad exposure to this field of biology. References are generously supplied to stimulate orig inal reading on the subject and to give access to valuable sources. The detailed index is intended to be of special assistance to researchers.




Developmental Genetics and Plant Evolution


Book Description

A benchmark text, Developmental Genetics and Plant Evolution integrates the recent revolution in the molecular-developmental genetics of plants with mainstream evolutionary thought. It reflects the increasing cooperation between strongly genomics-influenced researchers, with their strong grasp of technology, and evolutionary morphogenetists and sys




Manual on MUTATION BREEDING THIRD EDITION


Book Description

This paper provides guidelines for new high-throughput screening methods – both phenotypic and genotypic – to enable the detection of rare mutant traits, and reviews techniques for increasing the efficiency of crop mutation breeding.




Genetic Resources, Chromosome Engineering, and Crop Improvement


Book Description

Summarizing landmark research, Volume 2 of this essential series furnishes information on the availability of germplasm resources that breeders can exploit for producing high-yielding cereal crop varieties. Written by leading international experts, this volume offers the most comprehensive and up-to-date information on employing genetic resources t