Plant Growth Regulators to Manage Biotic and Abiotic Stress in Agroecosystems


Book Description

Plant Growth Regulators to Manage Biotic and Abiotic Stress in Agroecosystems is a comprehensive book that explores the use of plant growth regulators (PGRs) as effective stress-reduction techniques in agricultural environments. This book investigates the role of PGRs in handling biotic and abiotic stressors, offering useful insights to agriculturalists, researchers, and students. The book provides a comprehensive overview of many PGRs, including their methods of action and impacts on plant growth and development. It describes the use of PGRs to treat plant diseases caused by pathogens such as fungi, bacteria, and viruses. The book also discusses the application of PGRs to improve plant tolerance to adverse climatic circumstances including drought, salt, and extreme temperatures. The authors also underline PGRs' sustainable and environmentally friendly character, which makes them a potential option for chemical therapies. They explore PGRs' potential to improve agricultural yield and resilience, therefore helping food security in a rapidly changing global environment. This book is an excellent resource for learning about the applications and advantages of PGRs in modern agriculture.




Biostimulants in Agriculture


Book Description




Biochar in Mitigating Abiotic Stress in Plants


Book Description

Biochar for Mitigating Abiotic Stress in Plants provides a unique and leading resource for utilizing biochar to address specific plant health challenges, including osmotic, ionic, and oxidative stress. With a focus on crop yielding plants, the book provides targeted application insights to improve plant health, and resulting crop production. Readers will find important tools toward the identification, treatment, and management of a variety of abiotic stressors through the effective and appropriate application of biochar. This is an important reference for those seeking to apply current knowledge and an inspiration for further research in the area. Biochar is a carbon-rich organic substance produced by the pyrolysis of organic materials in the absence or presence of oxygen. It is an organic matter conditioner that can boost carbon sequestration and organic and inorganic pollutant immobilization. It is a crucial method for soil regeneration. Additionally, biochar facilitates increasing mineral supply and soil organic matter, resulting in soils with increased nutritional content. - Covers the latest evidence-based approach in the diagnosis and management of plants under abiotic stress - Includes easy-to-follow algorithms and key points - Proposes options for sustaining crop production under the effects of climate change




Molecular Aspects of Plant Beneficial Microbes in Agriculture


Book Description

Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.




Advances in Rice Research for Abiotic Stress Tolerance


Book Description

Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world's population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. - Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses - Provides practical insights into a wide range of management and crop improvement practices - Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology




Crop Stress and its Management: Perspectives and Strategies


Book Description

Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.




Microbial Technology for Agro-Ecosystems


Book Description

Microbial Technology for Agro-Ecosystems: Crop Productivity, Sustainability, and Biofortification describes the application of competent microbes in plant growth promotion, nutrient management and recycling from molecular perspectives. Understanding of molecular mechanism of Microbial diversity in association with plant roots is very imperative for plant health and ecosystem equilibrium. - Covers fundamental mechanisms, molecular approaches and function aspects of microbial technology - Describes innovative approaches to the management, development and advancement of agro-ecosystem green technologies - Highlights improving soil biological health, microbial biomass, soil fertility and plant productivity







Biocontrol Agents and Secondary Metabolites


Book Description

Biocontrol and Secondary Metabolites: Applications and Immunization for Plant Growth and Protection covers established and updated research on emerging trends in plant defense signaling in, and during, stress phases. Other topics cover growth at interface as a sustainable way of life and the context of human welfare and conservation of fungi as a group of organisms. Further, the book explores induced systemic resistance using biocontrol agents and/or secondary metabolites as a milestone for sustainable agricultural production, thus providing opportunities for the minimization or elimination of the use of fungicides. - Presents an overview on mechanisms by which plants protect themselves against herbivory and pathogenic microbes - Identifies the use of immunization as a popular and effective alternative to chemical pesticides - Explores how these fungi help crop plants in better uptake of soil nutrients, increase soil fertility, produce growth promoting substances, and secrete metabolites that act as bio-pesticides




Technology in Agriculture


Book Description

Food security is one of the primary themes of the United Nations’ Sustainable Development Goals. In this regard, agricultural engineering is considered the backbone of agriculture, and agricultural mechanization is considered a helpful way to enhance crop yield and farmers’ profitability. Technology in Agriculture presents research in the field of agricultural engineering technologies and applications in agricultural equipment engineering, biosystem engineering, energy systems engineering, and computers in agriculture. It provides an overview of recent advancements in agricultural engineering and examines key aspects of emerging technologies and their applications. In addition, the book explores modern methodologies such as artificial intelligence and machine learning for agricultural mechanization.