Plant Responses to Hypoxia


Book Description

Molecular oxygen deficiency leads to altered cellular metabolism and can dramatically reduce crop productivity. Nearly all crops are negatively affected by a lack of oxygen (hypoxia) due to adverse environmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fully understand how plants sense oxygen deficiency and their ability to respond using different strategies are crucial to increase hypoxia tolerance. Progress in our understanding has been significant in recent years. This topic certainly deserves more attention from the academic community; therefore, we have compiled a series of articles reflecting the advancements made thus far.




Plant responses to flooding


Book Description




Oxygen Sensing


Book Description

The ability of cells to sense and respond to changes in oxygenation underlies a multitude of developmental, physiological, and pathological processes. This volume provides a comprehensive compendium of experimental approaches to the study of oxygen sensing in 48 chapters that are written by leaders in their fields.




Plant Aquaporins


Book Description

Aquaporins are channel proteins that facilitate the diffusion of water and small uncharged solutes across cellular membranes. Plant aquaporins form a large family of highly divergent proteins that are involved in many different physiological processes. This book will summarize the recent advances regarding plant aquaporins, their phylogeny, structure, substrate specificity, mechanisms of regulation and roles in various important physiological processes related to the control of water flow and small solute distribution at the cell, tissue and plant level in an ever-changing environment.




Current Trends in the Embryology of Angiosperms


Book Description

The revolutionary progress made in this fascinating field of sexual reproduction inspired this generously illustrated volume. It includes 21 chapters written by experts, covering all aspects of the embryology of angiosperms, ranging from development, isolation, and structure of gametes to endosperm and seed development.




Crop Stress and its Management: Perspectives and Strategies


Book Description

Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.




Surviving Hypoxia


Book Description

Surviving Hypoxia: Mechanisms of Control and Adaptation is a synthesis of findings and thoughts concerning hypoxia. The thermodynamics of hypoxia are discussed in detail, including acid-base balance and self-pollution resulting from the accumulation of anaerobic end-products. The book focuses on descriptions and discussions of common facets, contrasting solutions in a variety of physiological hypoxia defense strategies, including those shown by plants, invertebrates, and vertebrates. Special treatment is given to the distinctive problems that hypoxia presents to vulnerable organs such as the kidney, liver, and brain. It also addresses pathological events in addition to protective mechanisms. Clinical implications of basic research are examined in the book, which provides new insights into underlying pathological processes occuring in hypoxic-induced organ failure and indicates new paths for successful clinical intervention. Surviving Hypoxia: Mechanisms of Control and Adaptation is an excellent reference for all researchers interested in the physiological effects of hypoxia, underlying pathological events, and protective mechanisms.




Plant Responses to Abiotic Stress


Book Description

Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. However, certain plant species and ecotypes have developed various mechanisms to adapt to such stress conditions. Recent advances in the understanding of these abiotic stress responses provided the impetus for compiling up-to-date reviews discussing all relevant topics in abiotic stress signaling of plants in a single volume. Topical reviews were prepared by selected experts and contain an introduction, discussion of the state of the art and important future tasks of the particular fields.







Abiotic Stress Response in Plants


Book Description

Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level.