Environmental Responses in Plants


Book Description

This volume describes different up-to-date methodological approaches, ranging from physiological assays to imaging and molecular techniques, to study a wide variety of plant responses to environmental cues. Environmental Responses in Plants: Methods and Protocols is divided into four sections: Tropisms, Photoperiodism and Circadian Rhythms, Abiotic Stress Responses, and Plant-Pathogen Interactions. The chapters in these sections include detailed protocols to investigate some of the many key biological processes underlying plant environmental responses, mostly in the model organism Arabidopsis thaliana, but also in Physcomitrella patens and in different crop species such as rice, potato, barley, or tomato. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Environmental Responses in Plants: Methods and Protocols, is a great resource for plant physiologists, biochemists, and cell and molecular scientists interested in this exciting and fast-growing research topic.




Environmental Pollution and Plant Responses


Book Description

One of the most problematic issues confronting societies today is the massive transformations of the environment throughout the world. The challenge of maintaining a sustainable environment is the most pressing issue of our time.




Plant Life under Changing Environment


Book Description

Plant Life under Changing Environment: Responses and Management presents the latest insights, reflecting the significant progress that has been made in understanding plant responses to various changing environmental impacts, as well as strategies for alleviating their adverse effects, including abiotic stresses. Growing from a focus on plants and their ability to respond, adapt, and survive, Plant Life under Changing Environment: Responses and Management addresses options for mitigating those responses to ensure maximum health and growth. Researchers and advanced students in environmental sciences, plant ecophysiology, biochemistry, molecular biology, nano-pollution climate change, and soil pollution will find this an important foundational resource. - Covers both responses and adaptation of plants to altered environmental states - Illustrates the current impact of climate change on plant productivity, along with mitigation strategies - Includes transcriptomic, proteomic, metabolomic and ionomic approaches




Plant Responses to Environmental Stimuli


Book Description

In this unique book, Michel Thellier has combined recent discoveries with older data dealing with plant memory and its potential role on plant acclimatization to environment stimuli. By placing memory within an evolutionary frame, the author persuades us that a new way of research has opened in plant physiology.Detailing experiments in a simplified manner, that general readers with an interest in this topic will find it easy to follow.




Plant Responses to Environmental Stresses


Book Description

Emphasizing the unpredictable nature of plant behaviour under stress and in relation to complex interactions of biological pathways, this work covers the versatility of plants in adapting to environmental change. It analyzes environmentally triggered adaptions in developmental programmes of plants that lead to permanent, heritable DNA modifications.




Plants' Responses to Novel Environmental Pressures


Book Description

Plants have been exposed to multiple environmental stressors on long-term (seasonal) and short-term (daily) basis since their appearance on land. However, the frequency and the intensity of stress events have increased much during the last three decades because of climate change. Plants have developed, however, a multiplicity of modular and highly integrated strategies to cope with challenges imposed by novel, usually harsher environments. These strategies include migration, acclimation and adaptation. Twelve articles in this research topic exactly focus on the relative significance of these response mechanisms for the successful acclimation of plants to a wide range of novel environmental pressures. Four articles , additionally, explore how plants respond to severe stress conditions resulting from the concurrent action of multiple stressors. Ten articles mostly examine how morpho-anatomical, physiological and biochemical-related traits integrate when plants suffer from ‘novel’ threats, such as solid, gaseous, and electromagnetic pollutants. Suitable physiological indicators for developing conservation strategies are described in the last two works. This research topic highlights that bottom-up, as well as, top-down approaches will be necessary to develop in near future in the study of plants´ responses to environmental pressures.




Plant Factory Basics, Applications and Advances


Book Description

Plant Factory Basics, Applications, and Advances takes the reader from an overview of the need for and potential of plant factories with artificial lighting (PFALs) in enhancing food production and security to the latest advances and benefits of this agriculture environment. Edited by leading experts Toyoki Kozai, Genhua Niu, and Joseph Masabni, this book aims to provide a platform of PFAL technology and science, including ideas on its extensive business and social applications towards the next-generation PFALs. The book is presented in four parts: Introduction, Basics, Applications, and Advanced Research. Part 1 covers why PFALs are necessary for urban areas, how they can contribute to the United Nations' Sustainable Development Goals, and a definition of PFAL in relation to the term "indoor vertical farm." Part 2 presents SI units and radiometric, photometric, and photonmetric quantities, types, components, and performance of LED luminaires, hydroponics and aquaponics, and plant responses to the growing environment in PFALs. Part 3 describes the indexes and definition of various productivity aspects of PFAL, provides comparisons of the productivity of the past and the present operation of any given PFALs, and compares PFALs with one another from the productivity standpoint by applying the common indexes. Part 4 describes the advances in lighting and their effects on plant growth, breeding of indoor and outdoor crops, production of fruiting vegetables and head vegetables, and concluding with a focus on a human-centered perspective of urban agriculture. Providing real-world insights and experience, Plant Factory Basics, Applications, and Advances is the ideal resource for those seeking to take the next step in understanding and applying PFAL concepts. - Provides the most in-depth assessment of PFAL available - Compares PFAL to "indoor vertical farming and provides important insights into selecting optimal choice - Presents insights to inspire design and management of the next generation of PFALs




Plant Performance Under Environmental Stress


Book Description

Global climate change is bound to create a number of abiotic and biotic stresses in the environment, which would affect the overall growth and productivity of plants. Like other living beings, plants have the ability to protect themselves by evolving various mechanisms against stresses, despite being sessile in nature. They manage to withstand extremes of temperature, drought, flooding, salinity, heavy metals, atmospheric pollution, toxic chemicals and a variety of living organisms, especially viruses, bacteria, fungi, nematodes, insects and arachnids and weeds. Incidence of abiotic stresses may alter the plant-pest interactions by enhancing susceptibility of plants to pathogenic organisms. These interactions often change plant response to abiotic stresses. Plant growth regulators modulate plant responses to biotic and abiotic stresses, and regulate their growth and developmental cascades. A number of physiological and molecular processes that act together in a complex regulatory network, further manage these responses. Crosstalk between autophagy and hormones also occurs to develop tolerance in plants towards multiple abiotic stresses. Similarly, biostimulants, in combination with correct agronomic practices, have shown beneficial effects on plant metabolism due to the hormonal activity that stimulates different metabolic pathways. At the same time, they reduce the use of agrochemicals and impart tolerance to biotic and abiotic stress. Further, the use of bio- and nano-fertilizers seem to hold promise to improve the nutrient use efficiency and hence the plant yield under stressful environments. It has also been shown that the seed priming agents impart stress tolerance. Additionally, tolerance or resistance to stress may also be induced by using specific chemical compounds such as polyamines, proline, glycine betaine, hydrogen sulfide, silicon, β-aminobutyric acid, γ-aminobutyric acid and so on. This book discusses the advances in plant performance under stressful conditions. It should be very useful to graduate students, researchers, and scientists in the fields of botanical science, crop science, agriculture, horticulture, ecological and environmental science.




Plant Response to Wind


Book Description




Responses of Plants to Air Pollution


Book Description

Responses of Plants to Air Pollution examines the effects of air pollutants, individually and synergistically, on both higher and lower plants. The subject matter overlaps into a wide range of disciplines including agronomy, plant anatomy, biochemistry, cryptogamic botany, ecology, entomology, forestry, horticulture, landscape architecture, meteorology, microscopy, plant pathology, plant physiology, and soil science. The opening chapter presents an overview of sources of air pollution, costs of air pollution, and mechanisms of pollution injury to plants. Separate chapters on sulfur dioxide, ozone, fluorides, peroxyacyl nitrates, oxides of nitrogen, and particulates follow. Subsequent chapters are devoted to plant responses to combinations of pollutants; to effects of pollutants on plant ultrastructure, on forests, and on lichens and bryophytes; to interactions of pollutants with canopies of vegetation; to interactions of pollutants and plant diseases; and to interactions of pollutants with agricultural practices. This book will be useful to scientists in many disciplines as well as those who share the concern that clean air can no longer be expected to be the normal environment for plants or animals. The book will also be a valuable a reference work or text for upper level undergraduate students, graduate students, researchers, and growers of plants.