Plasma Physics and Controlled Nuclear Fusion


Book Description

The primary objectives of this book are, firstly, to present the essential theoretical background needed to understand recent fusion research and, secondly, to describe the current status of fusion research for graduate students and senior undergraduates. It will also serve as a useful reference for scientists and engineers working in the related fields. In Part I, Plasma Physics, the author explains the basics of magneto-hydrodynamics and kinetic theory in a simple and compact way and, at the same time, covers important new topics for fusion studies such as the ballooning representation, instabilities driven by energetic particles, and various plasma models for computer simulations. Part II, Controlled Nuclear Fusion, attempts to review the "big picture" in fusion research. Mathematical derivations are comprehensively explained to better enable readers to later concentrate on the physics. All important phenomena and technologies are addressed, with a particular emphasis on the topics of most concern in current research.




Introduction to Plasma Physics and Controlled Fusion


Book Description

TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.




Plasma Physics and Fusion Energy


Book Description

There has been an increase in interest worldwide in fusion research over the last decade and a half due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever increasing demand for electrical energy. Based on a series of course notes from graduate courses in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for graduate students and researchers working in applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding.




Controlled Fusion and Plasma Physics


Book Description

Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, followed by discussions on tokamaks, reversed field pinch (RFP), stellarators, and mirrors. The text then explores ideal magnetohydrodynamic (MHD) instabilities, resistive instabilities, neoclassical tearing mode, resistive wall mode, the Boltzmann equation, the Vlasov equation, and Landau damping. After covering dielectric tensors of cold and hot plasmas, the author discusses the physical mechanisms of wave heating and noninductive current drive. The book concludes with an examination of the challenging issues of plasma transport by turbulence, such as magnetic fluctuation and zonal flow. Controlled Fusion and Plasma Physics clearly and thoroughly promotes intuitive understanding of the developments of the principal fusion programs and the relevant fundamental and advanced plasma physics associated with each program.




Plasma-Material Interaction in Controlled Fusion


Book Description

This book deals with the specific contact between the fourth state of matter, i.e. plasma, and the first state of matter, i.e. a solid wall, in controlled fusion experiments. A comprehensive analysis of the main processes of plasma-surface interaction is given together with an assessment of the most critical questions within the context of general criteria and operation limits. It also contains a survey on other important aspects in nuclear fusion.




Controlled Thermonuclear Fusion


Book Description

The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.




Nuclear Fusion


Book Description

Fusion research started over half a century ago. Although the task remains unfinished, the end of the road could be in sight if society makes the right decisions. Nuclear Fusion: Half a Century of Magnetic Confinement Fusion Research is a careful, scholarly account of the course of fusion energy research over the past fifty years. The authors outline the different paths followed by fusion research from initial ignorance to present understanding. They explore why a particular scheme would not work and why it was more profitable to concentrate on the mainstream tokamak development. The book features descriptive sections, in-depth explanations of certain physical and technical issues, scientific terms, and an extensive glossary that explains relevant abbreviations and acronyms.




Principles Of Fusion Energy: An Introduction To Fusion Energy For Students Of Science And Engineering


Book Description

This textbook accommodates the two divergent developmental paths which have become solidly established in the field of fusion energy: the process of sequential tokamak development toward a prototype and the need for a more fundamental and integrative research approach before costly design choices are made.Emphasis is placed on the development of physically coherent and mathematically clear characterizations of the scientific and technological foundations of fusion energy which are specifically suitable for a first course on the subject. Of interest, therefore, are selected aspects of nuclear physics, electromagnetics, plasma physics, reaction dynamics, materials science, and engineering systems, all brought together to form an integrated perspective on nuclear fusion and its practical utilization.The book identifies several distinct themes. The first is concerned with preliminary and introductory topics which relate to the basic and relevant physical processes associated with nuclear fusion. Then, the authors undertake an analysis of magnetically confined, inertially confined, and low-temperature fusion energy concepts. Subsequently, they introduce the important blanket domains surrounding the fusion core and discuss synergetic fusion-fission systems. Finally, they consider selected conceptual and technological subjects germane to the continuing development of fusion energy systems.




Nuclear Fusion Research


Book Description

It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.




Nuclear Fusion


Book Description

Power production and its consumption and distribution are among the most urgent problems of mankind. Despite positive dynamics in introducing renewable sources of energy, nuclear power plants still remain the major source of carbon-free electric energy. Fusion can be an alternative to fission in the foreseeable future. Research in the field of controlled nuclear fusion has been ongoing for almost 100 years. Magnetic confinement systems are the most promising for effective implementation, and the International Thermonuclear Experimental Reactor is under construction in France. To accomplish nuclear fusion on Earth, we have to resolve a number of scientific and technological problems. This monograph includes selected chapters on nuclear physics and mechanical engineering within the scope of nuclear fusion.