Plasmas and Energetic Processes in the Geomagnetosphere


Book Description

The importance and actuality of the Geomagnetospheres research are based on following three factors: 1. The Geomagnetosphere is the nearest giant natural laboratory; research is made possible by use of satellites to investigate in detail different plasmas and energetic processes in space caused by the interaction of high kinetic energy solar wind plasmas and their perturbations (Coronal Mass Ejections - CME, Interplanetary Shock Waves ISW, Interplanetary Interaction Regions IIR) frozen in Interplanetary Magnetic Fields (IMF) with the rotated main geomagnetic field. This interaction leads to dynamic transformation of magnetic fields in the geomagnetosphere, generation and trapping high energy particles (which can be called as Magnetospheric Cosmic Rays MCR), and the generation of multiple instabilities and electromagnetic radiations. These processes are in principle similar to processes in magnetospheres of other planets and their magnetic satellites, the atmosphere of the Sun and other stars, interplanetary and in interstellar space, and in many different astrophysical objects; 2. Modern technology, economics, navigation, television, internet, radio, military aspects, and the life of people on our planet are strongly connected to the operating systems of many satellites moving inside the geomagnetosphere. Different processes and MCR in the geomagnetosphere influence the operating systems of many satellites and often cause complications, from mild satellite malfunctions to fully destroying their hardwiring. The described research can be considered as a basis for developing methods of forecasting dangerous situations for satellites in different orbits and to decrease the risk of satellite breakdowns; 3. The interaction of CME, ISW, and IIR with the geomagnetosphere leads to the generation of big magnetic storms and decreases precursory effects in Galactic Cosmic Ray (GCR) intensity. These magnetic storms are dangerous not only for satellites, but also on the Earths surface for technology, radio connections, car accidents, and human health. Investigations of magnetic storm causes can help to develop methods of their forecasting and decreasing the level of magnetic storm hazards. Therefore, the other practical application of this research is connected with the problem of space weather influence on the technology, radio, navigation, transportation, and human health on the Earth independent of altitude and latitude.




Plasmas and Energetic Processes in the Geomagnetosphere: Internal and space sources, structure, and main properties of geomagnetosphere


Book Description

The importance and actuality of the Geomagnetosphere's research are based on following three factors: 1. The Geomagnetosphere is the nearest giant natural laboratory; research is made possible by use of satellites to investigate in detail different plasmas and energetic processes in space caused by the interaction of high kinetic energy solar wind plasmas and their perturbations (Coronal Mass Ejections - CME, Interplanetary Shock Waves - ISW, Interplanetary Interaction Regions - IIR) frozen in Interplanetary Magnetic Fields (IMF) with the rotated main geomagnetic field. This interaction leads to dynamic transformation of magnetic fields in the geomagnetosphere, generation and trapping high energy particles (which can be called as Magnetospheric Cosmic Rays - MCR), and the generation of multiple instabilities and electromagnetic radiations. These processes are in principle similar to processes in magnetospheres of other planets and their magnetic satellites, the atmosphere of the Sun and other stars, interplanetary and in interstellar space, and in many different astrophysical objects. 2. Modern technology, economics, navigation, television, internet, radio, military aspects, and the life of people on our planet are strongly connected to the operating systems of many satellites moving inside the geomagnetosphere. Different processes and MCR in the geomagnetosphere influence the operating systems of many satellites and often cause complications, from mild satellite malfunctions to fully destroying their hardwiring. The described research can be considered as a basis for developing methods of forecasting dangerous situations for satellites in different orbits and to decrease the risk of satellite breakdowns. 3. The interaction of CME, ISW, and IIR with the geomagnetosphere leads to the generation of big magnetic storms and decreases precursory effects in Galactic Cosmic Ray (GCR) intensity. These magnetic storms are dangerous not only for satellites, but also on the Earth's surface for technology, radio connections, car accidents, and human health. Investigations of magnetic storm causes can help to develop methods of their forecasting and decreasing the level of magnetic storm hazards. Therefore, the other practical application of this research is connected with the problem of space weather influence on the technology, radio, navigation, transportation, and human health on the Earth independent of altitude and latitude. We hope that this book will be interesting and useful for researches, engineers, and students of corresponding specialties.







Physics Briefs


Book Description







Plasmas and Energetic Processes in the Geomagnetosphere


Book Description

The importance and actuality of the geomagnetospheres research are based on the following three factors: 1. The geomagnetosphere is the nearest giant natural laboratory, where it is possible by multiple satellites and ground measurements to investigate in detail many different plasmas and energetic processes in space; these are caused by the interaction of high kinetic energy solar wind plasmas and their perturbations (Coronal Mass Ejections - CME, Interplanetary Shock Waves ISW, Interplanetary Interaction Regions IIR) frozen in Interplanetary Magnetic Fields (IMF) with the rotated main geomagnetic field. This interaction leads to a dynamic transformation in magnetic fields in the geomagnetosphere, generation and trapping of high energy particles (which are also called Magnetospheric Cosmic Rays MCR), and generation of instabilities and electromagnetic radiations. These processes are in principle similar to processes in magnetospheres of other planets and their moons, in the atmosphere of the Sun and other stars, in interplanetary and in interstellar space, and in many different astrophysical objects. Put simply, this research is an important basis for fundamental space and astrophysical science. 2. In modern times, technology, economics, navigation, television, internet, radio connections, military and all aspects of peoples lives on our planet are strongly connected with the work of many satellites moving inside the geomagnetosphere. Different processes and MCR in the geomagnetosphere influence satellites often lead to satellite malfunctions and sometimes fully destroying them. The described research can be considered as a basis for developing methods of forecasting dangerous situations for satellites in different orbits, and to decrease the risk of satellite malfunction and loss. 3. The interaction of CME, ISW, and IIR with the geomagnetosphere leads to the generation of big magnetic storms accompanied with Forbush decrease and precursory effects in Galactic Cosmic Ray (GCR) intensity. These magnetic storms are dangerous not only for satellites, but also on the Earths surface for technology, radio connections, car accidents, and human health (e.g., increasing frequency of infarct myocardial and strokes). Investigations of magnetic storm causes can help to develop methods of their forecasting and decrease the level of magnetic storm hazards. Therefore, the other practical application of this research is connected with the problem of space weather influence on the technology, radio connections, navigation, transportation, and human health on Earth in regards to altitude and latitude.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




PASCAL.


Book Description







Space Physics and Aeronomy, Magnetospheres in the Solar System


Book Description

An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief