Polyimide for Electronic and Electrical Engineering Applications


Book Description

Polyimide is one of the most efficient polymers in many industries for its excellent thermal, electrical, mechanical, and chemical properties as well as its easy processability. In the electronic and electrical engineering industries, polyimide has widely been used for decades thanks to its very good dielectric and insulating properties at the high electric field and at high temperatures of around 200°C in long term-service. Moreover, polyimide appears essential for the development of new electronic devices where further considerations such as high power density, integration, higher temperature, thermal conduction management, energy storage, reliability, or flexibility are required in order to sustain the growing global electrical energy consumption. This book gathers interdisciplinary chapters on polyimide in various topics through state-of-the-art and original ongoing research.




Advanced Polyimide Materials


Book Description

Advanced Polyimide Materials: Synthesis, Characterization and Applications summarizes and reviews recent research and developments on several key PI materials. A wide array of PI materials are included, including high performance PI films for microelectronic fabrication and packaging, display and space applications, fiber-reinforced PI composites for structural applications in aerospace and aviation industries, and PI photoresists for integrated circuit packaging. The chemical features of PI are also described, including semi-alicyclic PIs, fluorinated PIs, phosphorous-containing PIs, silicon-containing PIs and other new varieties, providing a comprehensive overview on PI materials while also summarizing the latest research. The book serves as a valuable reference book for engineers and students working on polymer materials, microelectronics manufacturing and packaging in industries such as aerospace and aviation. - Reviews the latest research, development and future prospective of polyimides - Describes the progress made in the research on polyimide materials, including polyimide films, matrices for carbon fiber composites, coatings for microelectronics and display devices, forms and fibers - Presents a highly organized work that is composed of different sections that are easily compared




Photosensitive Polyimides


Book Description

This is the first book to provide an in-depth presentation of photosensitive polyimides for electronic and photonic applications. The authors are leading specialists in this field from Japan, Europe and the U.S. From the Preface Aromatic polyimides were developed originally as thermostable flexible polymer films for space applications. Now polyimides have found widespread use in the manufacture of electronic devices and have been employed in increasingly diverse areas of electronics and information technology. In addition to their excellent thermal stability and high processability, a wide range of chemical and physical properties provided by molecular engineering makes polyimides highly versatile in the electronics and information industries. Lithography of polyimides is an inevitable process in using polyimides for microelectronic fields, and hence increasing research has been devoted to developing photosensitive polyimides, which make it unnecessary to use photoresists for patterning polyimides and diminishing markedly the number of steps in fabrication of various electronic devices. In addition, the development of technology of photosensitive polyimides is expected to play a great role in manufacturing photonic devices in the near future, when the design and control of hyper fine structures . . . including higher thermal stability and better processability would be essential.




Polymer Composites for Electrical Engineering


Book Description

Explore the diverse electrical engineering application of polymer composite materials with this in-depth collection edited by leaders in the field Polymer Composites for Electrical Engineering delivers a comprehensive exploration of the fundamental principles, state-of-the-art research, and future challenges of polymer composites. Written from the perspective of electrical engineering applications, like electrical and thermal energy storage, high temperature applications, fire retardance, power cables, electric stress control, and others, the book covers all major application branches of these widely used materials. Rather than focus on polymer composite materials themselves, the distinguished editors have chosen to collect contributions from industry leaders in the area of real and practical electrical engineering applications of polymer composites. The books relevance will only increase as advanced polymer composites receive more attention and interest in the area of advanced electronic devices and electric power equipment. Unique amongst its peers, Polymer Composites for Electrical Engineering offers readers a collection of practical and insightful materials that will be of great interest to both academic and industrial audiences. Those resources include: A comprehensive discussion of glass fiber reinforced polymer composites for power equipment, including GIS, bushing, transformers, and more) Explorations of polymer composites for capacitors, outdoor insulation, electric stress control, power cable insulation, electrical and thermal energy storage, and high temperature applications A treatment of semi-conductive polymer composites for power cables In-depth analysis of fire-retardant polymer composites for electrical engineering An examination of polymer composite conductors Perfect for postgraduate students and researchers working in the fields of electrical, electronic, and polymer engineering, Polymer Composites for Electrical Engineering will also earn a place in the libraries of those working in the areas of composite materials, energy science and technology, and nanotechnology.




Polyimides


Book Description

Polyimides: Advances in Blends and Nanocomposites brings together the latest research in the area of polyimide-based blends and nanocomposites, opening the door to a range of cutting-edge applications. The book begins by discussing polyimide architectures, synthetic pathways, processing, properties, challenges and application potential before introducing polyimide-based blends and nanocomposites and explaining the modification of polyimide chains for high performance composites matrices. This is followed by chapters offering detailed, methodical coverage of each main type of blend and nanocomposite, covering preparation techniques, structures, properties and current and emerging applications.Throughout the book's chapters, there is an emphasis on methods for high-performance polyimide-based materials, with a constant orientation towards applications and additional in-depth coverage at the end of the book on three key application areas, gas separation, fuel cells, and biomedical applications. This is a valuable resource for researchers and advanced students across polymer science, composite science, nanotechnology, materials chemistry, biomaterials, and chemical engineering, as well as R&D professionals, scientists and engineers working with polyimide-based materials for advanced industrial applications. - Provides comprehensive coverage of the different types of polyimide blends and nanocomposites - Offers a systematic approach, covering synthesis, characterization, properties and applications - Guides the reader towards a range of state-of-the-art applications such as fuel cells and biomedical applications




High Performance Polymers - Polyimides Based


Book Description

The feature of polyimides and other heterocyclic polymers are now well-established and used for long term temperature durability in the range of 250 - 350'C. This book will review synthesis, mechanisms, ultimate properties, physico-chemical properties, processing and applications of such high performance materials needed in advanced technologies. It presents interdisciplinary papers on the state of knowledge of each topic under consideration through a combination of overviews and original unpublished research. The volume contains eleven chapters divided into three sections: Chemistry; Chemical and Physical Properties; and Applications.




Shape Memory Polymer-Derived Nanocomposites


Book Description

Shape Memory Polymer derived Nanocomposites: Features to Cutting-Edge Advancements summarizes the up-to-date of fundamentals and applications of the shape memory polymer derived nanocomposites. Design and fabrication of shape memory polymeric nanocomposites have gained significant importance in the field of up-to-date nano/materials science and technology. In recent times, the shape memory polymers and nanocomposites have attracted considerable academic and industrial research interest. This feature book will present a state-of-the-art assessment on the versatile shape memory materials. The flexibility, durability, heat stability, shape deformability, and shape memory features of these polymers have shown dramatic improvements with the nanofiller addition. Appropriate choice of the stimuli-responsive polymer, nanofiller type and content, and fabrication strategies may lead to enhanced physicochemical features and stimuli-responsive performance. Several successful stimuli-responsive effects have been achieved in the shape memory nanocomposites such as thermo-responsive, electro-active, photo-active, water/moisture-responsive, pH-sensitive, etc. Consequently, the shape memory polymer based nanocomposites have found applications in high-tech devices and applications. This book initially offers a futuristic knowledge regarding indispensable features of the shape memory polymeric nanocomposites. Afterwards, the essential categories of the stimuli-responsive polymer-based nanocomposites have been discussed in terms of recent scientific literature. Subsequent sections of this book are dedicated to the potential of shape memory polymer-based nanocomposite in various technical fields. Significant application areas have been identified as foam materials, aerospace, radiation shielding, sensor, actuator, supercapacitor, electronics and biomedical relevance. The book chapters also point towards the predictable challenges and future opportunities in the field of shape memory nanocomposites. - Provides the essentials of shape memory polymeric nanocomposites - Includes important categories of shape memory nanocomposites - Presents current technological applications of shape memory polymers and derived nanocomposite in sponges, aerospace, EMI shielding, ionizing radiation shielding, sensors, actuator, supercapacitor, electronics, and biomedical fields




Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, volume 2


Book Description

This volume documents the proceedings of the Second International Symposium on Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, held in Newark, New Jersey, December 3-6, 2001. Polyimides possess many desirable attributes, so this class of materials has found applications in many technologies ranging from




High Temperature Electronics


Book Description

The development of electronics that can operate at high temperatures has been identified as a critical technology for the next century. Increasingly, engineers will be called upon to design avionics, automotive, and geophysical electronic systems requiring components and packaging reliable to 200 °C and beyond. Until now, however, they have had no single resource on high temperature electronics to assist them. Such a resource is critically needed, since the design and manufacture of electronic components have now made it possible to design electronic systems that will operate reliably above the traditional temperature limit of 125 °C. However, successful system development efforts hinge on a firm understanding of the fundamentals of semiconductor physics and device processing, materials selection, package design, and thermal management, together with a knowledge of the intended application environments. High Temperature Electronics brings together this essential information and presents it for the first time in a unified way. Packaging and device engineers and technologists will find this book required reading for its coverage of the techniques and tradeoffs involved in materials selection, design, and thermal management and for its presentation of best design practices using actual fielded systems as examples. In addition, professors and students will find this book suitable for graduate-level courses because of its detailed level of explanation and its coverage of fundamental scientific concepts. Experts from the field of high temperature electronics have contributed to nine chapters covering topics ranging from semiconductor device selection to testing and final assembly.




Supercapacitors


Book Description

This edited volume Supercapacitors: Theoretical and Practical Solutions is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of electronic devices and materials. The book comprises single chapters authored by various researchers and is edited by a group of experts. Each chapter is complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on electronic devices and materials and opens new possible research paths for further novel developments.